2,320 research outputs found

    Sparse-to-Continuous: Enhancing Monocular Depth Estimation using Occupancy Maps

    Full text link
    This paper addresses the problem of single image depth estimation (SIDE), focusing on improving the quality of deep neural network predictions. In a supervised learning scenario, the quality of predictions is intrinsically related to the training labels, which guide the optimization process. For indoor scenes, structured-light-based depth sensors (e.g. Kinect) are able to provide dense, albeit short-range, depth maps. On the other hand, for outdoor scenes, LiDARs are considered the standard sensor, which comparatively provides much sparser measurements, especially in areas further away. Rather than modifying the neural network architecture to deal with sparse depth maps, this article introduces a novel densification method for depth maps, using the Hilbert Maps framework. A continuous occupancy map is produced based on 3D points from LiDAR scans, and the resulting reconstructed surface is projected into a 2D depth map with arbitrary resolution. Experiments conducted with various subsets of the KITTI dataset show a significant improvement produced by the proposed Sparse-to-Continuous technique, without the introduction of extra information into the training stage.Comment: Accepted. (c) 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Confidence driven TGV fusion

    Full text link
    We introduce a novel model for spatially varying variational data fusion, driven by point-wise confidence values. The proposed model allows for the joint estimation of the data and the confidence values based on the spatial coherence of the data. We discuss the main properties of the introduced model as well as suitable algorithms for estimating the solution of the corresponding biconvex minimization problem and their convergence. The performance of the proposed model is evaluated considering the problem of depth image fusion by using both synthetic and real data from publicly available datasets

    Semantic 3D Reconstruction with Finite Element Bases

    Full text link
    We propose a novel framework for the discretisation of multi-label problems on arbitrary, continuous domains. Our work bridges the gap between general FEM discretisations, and labeling problems that arise in a variety of computer vision tasks, including for instance those derived from the generalised Potts model. Starting from the popular formulation of labeling as a convex relaxation by functional lifting, we show that FEM discretisation is valid for the most general case, where the regulariser is anisotropic and non-metric. While our findings are generic and applicable to different vision problems, we demonstrate their practical implementation in the context of semantic 3D reconstruction, where such regularisers have proved particularly beneficial. The proposed FEM approach leads to a smaller memory footprint as well as faster computation, and it constitutes a very simple way to enable variable, adaptive resolution within the same model

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Underwater simulation and mapping using imaging sonar through ray theory and Hilbert maps

    Get PDF
    Mapping, sometimes as part of a SLAM system, is an active topic of research and has remarkable solutions using laser scanners, but most of the underwater mapping is focused on 2D maps, treating the environment as a floor plant, or on 2.5D maps of the seafloor. The reason for the problematic of underwater mapping originates in its sensor, i.e. sonars. In contrast to lasers (LIDARs), sonars are unprecise high-noise sensors. Besides its noise, imaging sonars have a wide sound beam effectuating a volumetric measurement. The first part of this dissertation develops an underwater simulator for highfrequency single-beam imaging sonars capable of replicating multipath, directional gain and typical noise effects on arbitrary environments. The simulation relies on a ray theory based method and explanations of how this theory follows from first principles under short-wavelegnth assumption are provided. In the second part of this dissertation, the simulator is combined to a continous map algorithm based on Hilbert Maps. Hilbert maps arise as a machine learning technique over Hilbert spaces, using features maps, applied to the mapping context. The embedding of a sonar response in such a map is a contribution. A qualitative comparison between the simulator ground truth and the reconstucted map reveal Hilbert maps as a promising technique to noisy sensor mapping and, also, indicates some hard to distinguish characteristics of the surroundings, e.g. corners and non smooth features.O mapeamento, às vezes como parte de um sistema SLAM, é um tema de pesquisa ativo e tem soluções notáveis usando scanners a laser, mas a maioria do mapeamento subaquático é focada em mapas 2D, que tratam o ambiente como uma planta, ou mapas 2.5D do fundo do mar. A razão para a dificuldade do mapeamento subaquático origina-se no seu sensor, i.e. sonares. Em contraste com lasers (LIDARs), os sonares são sensores imprecisos e com alto nível de ruído. Além do seu ruído, os sonares do tipo imaging têm um feixe sonoro muito amplo e, com isso, efetuam uma medição volumétrica, ou seja, sobre todo um volume. Na primeira parte dessa dissertação se desenvolve um simulador para sonares do tipo imaging de feixo único de alta frequência capaz de replicar os efeitos típicos de multicaminho, ganho direcional e ruído de fundo em ambientes arbitrários. O simulador implementa um método baseado na teoria geométrica de raios, com todo seu desenvolvimento partindo da acústica subaquática. Na segunda parte dessa dissertação, o simulador é incorporado em um algoritmo de reconstrução de mapas contínuos baseado em Hilbert Maps. Hilbert Maps surge como uma técnica de aprendizado de máquina sobre espaços de Hilbert, usando mapas de características, aplicadas ao contexto de mapeamento. A incorporação de uma resposta de sonar em um tal mapa é uma contribuição desse trabalho. Uma comparação qualitativa entre o ambiente de referência fornecido ao simulador e o mapa reconstruído pela técnica proposta, revela Hilbert Maps como uma técnica promissora para mapeamento atráves de sensores ruidosos e, também, aponta para algumas características do ambiente difíceis de se distinguir, e.g. cantos e regiões não suaves
    corecore