13,126 research outputs found

    Ultra-high gain diffusion-driven organic transistor

    Get PDF
    Emerging large-area technologies based on organic transistors are enabling the fabrication of low-cost flexible circuits, smart sensors and biomedical devices. High-gain transistors are essential for the development of large-scale circuit integration, high-sensitivity sensors and signal amplification in sensing systems. Unfortunately, organic field-effect transistors show limited gain, usually of the order of tens, because of the large contact resistance and channel-length modulation. Here we show a new organic field-effect transistor architecture with a gain larger than 700. This is the highest gain ever reported for organic field-effect transistors. In the proposed organic field-effect transistor, the charge injection and extraction at the metal–semiconductor contacts are driven by the charge diffusion. The ideal conditions of ohmic contacts with negligible contact resistance and flat current saturation are demonstrated. The approach is general and can be extended to any thin-film technology opening unprecedented opportunities for the development of high-performance flexible electronics

    Device modelling for bendable piezoelectric FET-based touch sensing system

    Get PDF
    Flexible electronics is rapidly evolving towards devices and circuits to enable numerous new applications. The high-performance, in terms of response speed, uniformity and reliability, remains a sticking point. The potential solutions for high-performance related challenges bring us back to the timetested silicon based electronics. However, the changes in the response of silicon based devices due to bending related stresses is a concern, especially because there are no suitable models to predict this behavior. This also makes the circuit design a difficult task. This paper reports advances in this direction, through our research on bendable Piezoelectric Oxide Semiconductor Field Effect Transistor (POSFET) based touch sensors. The analytical model of POSFET, complimented with Verilog-A model, is presented to describe the device behavior under normal force in planar and stressed conditions. Further, dynamic readout circuit compensation of POSFET devices have been analyzed and compared with similar arrangement to reduce the piezoresistive effect under tensile and compressive stresses. This approach introduces a first step towards the systematic modeling of stress induced changes in device response. This systematic study will help realize high-performance bendable microsystems with integrated sensors and readout circuitry on ultra-thin chips (UTCs) needed in various applications, in particular, the electronic skin (e-skin)

    Tactile sensing chips with POSFET array and integrated interface electronics

    Get PDF
    This work presents the advanced version of novel POSFET (Piezoelectric Oxide Semiconductor Field Effect Transistor) devices based tactile sensing chip. The new version of the tactile sensing chip presented here comprises of a 4 x 4 array of POSFET touch sensing devices and integrated interface electronics (i.e. multiplexers, high compliance current sinks and voltage output buffers). The chip also includes four temperature diodes for the measurement of contact temperature. Various components on the chip have been characterized systematically and the overall operation of the tactile sensing system has been evaluated. With new design the POSFET devices have improved performance (i.e. linear response in the dynamic contact forces range of 0.01–3N and sensitivity (without amplification) of 102.4 mV/N), which is more than twice the performance of their previous implementations. The integrated interface electronics result in reduced interconnections which otherwise would be needed to connect the POSFET array with off-chip interface electronic circuitry. This research paves the way for CMOS (Complementary Metal Oxide Semiconductor) implementation of full on-chip tactile sensing systems based on POSFETs

    Printed dose-recording tag based on organic complementary circuits and ferroelectric nonvolatile memories.

    Get PDF
    We have demonstrated a printed electronic tag that monitors time-integrated sensor signals and writes to nonvolatile memories for later readout. The tag is additively fabricated on flexible plastic foil and comprises a thermistor divider, complementary organic circuits, and two nonvolatile memory cells. With a supply voltage below 30 V, the threshold temperatures can be tuned between 0 °C and 80 °C. The time-temperature dose measurement is calibrated for minute-scale integration. The two memory bits are sequentially written in a thermometer code to provide an accumulated dose record

    Flexible Electronics Based on Solution Processable Organic Semiconductors and Colloidal Semiconductor Nanocrystals

    Get PDF
    Solution-processable semiconductors hold great potential for the large-area, low-cost fabrication of flexible electronics. Recent advances in flexible electronics have introduced new functional devices such as light-weight displays and conformal sensors. However, key challenges remain to develop flexible devices from emerging materials that use simple fabrication processes and have high-performance. In this thesis, we first use a solution-processable organic semiconductor to build field-effect transistors on large-area plastic with mobility of 0.1 cm^2/Vs. Combined with passive components, we are able to build voltage amplifiers to capture few mV amplitude bio-signals. This work provides a proof of concept on applying solution processable materials in flexible circuits. In the second part of the thesis, we introduce colloidal CdSe nanocrystals (NCs) as solution-processable inks of semiconductor thin film devices. By strongly coupling and doping the CdSe NC thin films, we demonstrate high-performance, flexible nanocrystal field-effect transistors (NC-FETs) with mobility greater than 20 cm^2/Vs under 2V supply. Using these NC-FETs as building blocks, we demonstrate the first flexible nanocrystal integrated circuits (NCICs) with switching speed of 600 µsec. To design reliable integrated circuits with low-noise, we characterize the flicker noise amplitude and origin. We find the figure of merit for noise, the Hooge parameter, to be 3 x 10^-2 for CdSe NC-FETs, comparable to other emerging solution processable organic semiconductors and promising for low-noise circuit applications.As most of NCs are reactive and their devices tend to degrade in air, we develop processes that allow manipulation of the NCs in ambient atmosphere without compromising device performance. These processes open up opportunities for NC-based devices to be fabricated over large area using photolithography. By scaling the devices and reducing device parasitics, we are able to fabricate hundreds of NC-FETs on wafer-scale substrates and integrate them as circuits. We demonstrate voltage amplifiers with bandwidths of a few kHz and ring-oscillators with a stage delay of 3 µsec. We also show functional NCICs NOR and NAND logic. This thesis demonstrates the use of colloidal NCs to realize flexible, large-area circuits and the feasibility of more advanced analog and digital NCICs built on flexible substrates for various applications

    POSFET tactile sensing arrays using CMOS technology

    Get PDF
    This work presents fabrication and evaluation of novel POSFET (Piezoelectric Oxide Semiconductor Field Effect Transistor) devices based tactile sensing chip. In the newer version presented here, the tactile sensing chip has been fabricated using CMOS (Complementary Metal Oxide Semiconductor) technology. The chip consists of 4 x 4 POSFET touch sensing devices (or taxels) and both, the individual taxels and the array are designed to match spatio–temporal performance of the human fingertips. To detect contact events, the taxels utilize the contact forces induced change in the polarization level of piezoelectric polymer (and hence change in the induced channel current of MOS). The POSFET device on the chip have linear response in the tested dynamic contact forces range of 0.01–3 N and the sensitivity (without amplification) is 102.4 mV/N

    Modeling of CMOS devices and circuits on flexible ultrathin chips

    Get PDF
    The field of flexible electronics is rapidly evolving. The ultrathin chips are being used to address the high-performance requirements of many applications. However, simulation and prediction of changes in response of device/circuit due to bending induced stress remains a challenge as of lack of suitable compact models. This makes circuit designing for bendable electronics a difficult task. This paper presents advances in this direction, through compressive and tensile stress studies on transistors and simple circuits such as inverters with different channel lengths and orientations of transistors on ultrathin chips. Different designs of devices and circuits in a standard CMOS 0.18-μm technology were fabricated in two separated chips. The two fabricated chips were thinned down to 20 μm using standard dicing-before-grinding technique steps followed by post-CMOS processing to obtain sufficient bendability (20-mm bending radius, or 0.05% nominal strain). Electrical characterization was performed by packaging the thinned chip on a flexible substrate. Experimental results show change of carrier mobilities in respective transistors, and switching threshold voltage of the inverters during different bending conditions (maximum percentage change of 2% for compressive and 4% for tensile stress). To simulate these changes, a compact model, which is a combination of mathematical equations and extracted parameters from BSIM4, has been developed in Verilog-A and compiled into Cadence Virtuoso environment. The proposed model predicts the mobility variations and threshold voltage in compressive and tensile bending stress conditions and orientations, and shows an agreement with the experimental measurements (1% for compressive and 0.6% for tensile stress mismatch)

    Scalable Microfabrication Procedures for Adhesive-Integrated Flexible and Stretchable Electronic Sensors.

    Get PDF
    New classes of ultrathin flexible and stretchable devices have changed the way modern electronics are designed to interact with their target systems. Though more and more novel technologies surface and steer the way we think about future electronics, there exists an unmet need in regards to optimizing the fabrication procedures for these devices so that large-scale industrial translation is realistic. This article presents an unconventional approach for facile microfabrication and processing of adhesive-peeled (AP) flexible sensors. By assembling AP sensors on a weakly-adhering substrate in an inverted fashion, we demonstrate a procedure with 50% reduced end-to-end processing time that achieves greater levels of fabrication yield. The methodology is used to demonstrate the fabrication of electrical and mechanical flexible and stretchable AP sensors that are peeled-off their carrier substrates by consumer adhesives. In using this approach, we outline the manner by which adhesion is maintained and buckling is reduced for gold film processing on polydimethylsiloxane substrates. In addition, we demonstrate the compatibility of our methodology with large-scale post-processing using a roll-to-roll approach

    Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors

    Get PDF
    A general strategy to impart mechanical stretchability to stretchable electronics involves engineering materials into special architectures to accommodate or eliminate the mechanical strain in nonstretchable electronic materials while stretched. We introduce an all solution-processed type of electronics and sensors that are rubbery and intrinsically stretchable as an outcome from all the elastomeric materials in percolated composite formats with P3HT-NFs [poly(3-hexylthiophene-2,5-diyl) nanofibrils] and AuNP-AgNW (Au nanoparticles with conformally coated silver nanowires) in PDMS (polydimethylsiloxane). The fabricated thin-film transistors retain their electrical performances by more than 55% upon 50% stretching and exhibit one of the highest P3HT-based field-effect mobilities of 1.4 cm2/V.s, owing to crystallinity improvement. Rubbery sensors, which include strain, pressure, and temperature sensors, show reliable sensing capabilities and are exploited as smart skins that enable gesture translation for sign language alphabet and haptic sensing for robotics to illustrate one of the applications of the sensors
    corecore