56,587 research outputs found

    Detection of major ASL sign types in continuous signing for ASL recognition

    Get PDF
    In American Sign Language (ASL) as well as other signed languages, different classes of signs (e.g., lexical signs, fingerspelled signs, and classifier constructions) have different internal structural properties. Continuous sign recognition accuracy can be improved through use of distinct recognition strategies, as well as different training datasets, for each class of signs. For these strategies to be applied, continuous signing video needs to be segmented into parts corresponding to particular classes of signs. In this paper we present a multiple instance learning-based segmentation system that accurately labels 91.27% of the video frames of 500 continuous utterances (including 7 different subjects) from the publicly accessible NCSLGR corpus (Neidle and Vogler, 2012). The system uses novel feature descriptors derived from both motion and shape statistics of the regions of high local motion. The system does not require a hand tracker

    New Method for Optimization of License Plate Recognition system with Use of Edge Detection and Connected Component

    Full text link
    License Plate recognition plays an important role on the traffic monitoring and parking management systems. In this paper, a fast and real time method has been proposed which has an appropriate application to find tilt and poor quality plates. In the proposed method, at the beginning, the image is converted into binary mode using adaptive threshold. Then, by using some edge detection and morphology operations, plate number location has been specified. Finally, if the plat has tilt, its tilt is removed away. This method has been tested on another paper data set that has different images of the background, considering distance, and angel of view so that the correct extraction rate of plate reached at 98.66%.Comment: 3rd IEEE International Conference on Computer and Knowledge Engineering (ICCKE 2013), October 31 & November 1, 2013, Ferdowsi Universit Mashha

    Dynamic gesture recognition using PCA with multi-scale theory and HMM

    Get PDF
    In this paper, a dynamic gesture recognition system is presented which requires no special hardware other than a Webcam. The system is based on a novel method combining Principal Component Analysis (PCA) with hierarchical multi-scale theory and Discrete Hidden Markov Models (DHMM). We use a hierarchical decision tree based on multiscale theory. Firstly we convolve all members of the training data with a Gaussian kernel, which blurs differences between images and reduces their separation in feature space. This reduces the number of eigenvectors needed to describe the data. A principal component space is computed from the convolved data. We divide the data in this space into two clusters using the k-means algorithm. Then the level of blurring is reduced and PCA is applied to each of the clusters separately. A new principal component space is formed from each cluster. Each of these spaces is then divided into two and the process is repeated. We thus produce a binary tree of principal component spaces where each level of the tree represents a different degree of blurring. The search time is then proportional to the depth of the tree, which makes it possible to search hundreds of gestures in real time. The output of the decision tree is then input into DHMM to recognize temporal information

    Computational Models for the Automatic Learning and Recognition of Irish Sign Language

    Get PDF
    This thesis presents a framework for the automatic recognition of Sign Language sentences. In previous sign language recognition works, the issues of; user independent recognition, movement epenthesis modeling and automatic or weakly supervised training have not been fully addressed in a single recognition framework. This work presents three main contributions in order to address these issues. The first contribution is a technique for user independent hand posture recognition. We present a novel eigenspace Size Function feature which is implemented to perform user independent recognition of sign language hand postures. The second contribution is a framework for the classification and spotting of spatiotemporal gestures which appear in sign language. We propose a Gesture Threshold Hidden Markov Model (GT-HMM) to classify gestures and to identify movement epenthesis without the need for explicit epenthesis training. The third contribution is a framework to train the hand posture and spatiotemporal models using only the weak supervision of sign language videos and their corresponding text translations. This is achieved through our proposed Multiple Instance Learning Density Matrix algorithm which automatically extracts isolated signs from full sentences using the weak and noisy supervision of text translations. The automatically extracted isolated samples are then utilised to train our spatiotemporal gesture and hand posture classifiers. The work we present in this thesis is an important and significant contribution to the area of natural sign language recognition as we propose a robust framework for training a recognition system without the need for manual labeling

    Continuous sign recognition of brazilian sign language in a healthcare setting

    Get PDF
    Communication is the basis of human society. The majority of people communicate using spoken language in oral or written form. However, sign language is the primary mode of communication for deaf people. In general, understanding spoken information is a major challenge for the deaf and hard of hearing. Access to basic information and essential services is challenging for these individuals. For example, without translation support, carrying out simple tasks in a healthcare center such as asking for guidance or consulting with a doctor, can be hopelessly difficult. Computer-based sign language recognition technologies offer an alternative to mitigate the communication barrier faced by the deaf and hard of hearing. Despite much effort, research in this field is still in its infancy and automatic recognition of continuous signing remains a major challenge. This paper presents an ongoing research project designed to recognize continuous signing of Brazilian Sign Language (Libras) in healthcare settings. Health emergency situations and dialogues inspire the vocabulary of the signs and sentences we are using to contribute to the field301Vision-based human activity recognition8289COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESnão te
    corecore