456 research outputs found

    Regression depth and support vector machine

    Get PDF
    The regression depth method (RDM) proposed by Rousseeuw and Hubert [RH99] plays an important role in the area of robust regression for a continuous response variable. Christmann and Rousseeuw [CR01] showed that RDM is also useful for the case of binary regression. Vapnik?s convex risk minimization principle [Vap98] has a dominating role in statistical machine learning theory. Important special cases are the support vector machine (SVM), [epsilon]-support vector regression and kernel logistic regression. In this paper connections between these methods from different disciplines are investigated for the case of pattern recognition. Some results concerning the robustness of the SVM and other kernel based methods are given. --

    Supporting Analysts by Dynamic Extraction and Classification of Requirements-Related Knowledge

    Full text link
    © 2019 IEEE. In many software development projects, analysts are required to deal with systems' requirements from unfamiliar domains. Familiarity with the domain is necessary in order to get full leverage from interaction with stakeholders and for extracting relevant information from the existing project documents. Accurate and timely extraction and classification of requirements knowledge support analysts in this challenging scenario. Our approach is to mine real-time interaction records and project documents for the relevant phrasal units about the requirements related topics being discussed during elicitation. We propose to use both generative and discriminating methods. To extract the relevant terms, we leverage the flexibility and power of Weighted Finite State Transducers (WFSTs) in dynamic modelling of natural language processing tasks. We used an extended version of Support Vector Machines (SVMs) with variable-sized feature vectors to efficiently and dynamically extract and classify requirements-related knowledge from the existing documents. To evaluate the performance of our approach intuitively and quantitatively, we used edit distance and precision/recall metrics. We show in three case studies that the snippets extracted by our method are intuitively relevant and reasonably accurate. Furthermore, we found that statistical and linguistic parameters such as smoothing methods, and words contiguity and order features can impact the performance of both extraction and classification tasks

    Using Kernel Perceptrons to Learn Action Effects for Planning

    Get PDF
    Abstract — We investigate the problem of learning action effects in STRIPS and ADL planning domains. Our approach is based on a kernel perceptron learning model, where action and state information is encoded in a compact vector representation as input to the learning mechanism, and resulting state changes are produced as output. Empirical results of our approach indicate efficient training and prediction times, with low average error rates (< 3%) when tested on STRIPS and ADL versions of an object manipulation scenario. This work is part of a project to integrate machine learning techniques with a planning system, as part of a larger cognitive architecture linking a highlevel reasoning component with a low-level robot/vision system. I

    Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    This work presents a first evaluation of using spatio-temporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain and from object recognition to dynamic texture recognition. The time-recursive formulation enables computationally efficient time-causal recognition. The experimental evaluation demonstrates competitive performance compared to state-of-the-art. Especially, it is shown that binary versions of our dynamic texture descriptors achieve improved performance compared to a large range of similar methods using different primitives either handcrafted or learned from data. Further, our qualitative and quantitative investigation into parameter choices and the use of different sets of receptive fields highlights the robustness and flexibility of our approach. Together, these results support the descriptive power of this family of time-causal spatio-temporal receptive fields, validate our approach for dynamic texture recognition and point towards the possibility of designing a range of video analysis methods based on these new time-causal spatio-temporal primitives.Comment: 29 pages, 16 figure
    corecore