11,100 research outputs found

    Vertical liquid controlled adiabatic waveguide coupler

    Get PDF
    A broadband vertical liquid controlled optical waveguide coupler (LCC) is demonstrated. The fabricated vertical LCC with silicon nitride (SiN) waveguides can switch light between 2 stacked photonic circuit layers with zero energy consumption in a steady switch state. In combination with low-loss interlayer waveguide crossovers they enable large scale non-volatile switch circuits with low loss. The fabricated vertical LCC has a loss less than 2.0 dB in bar state and less than 2.6 dB in cross state over the telecommunication wavelength range 1260 nm to 1630 nm. Interlayer waveguide crossovers with the same interlayer oxide thickness as the LCC have a loss less than 0.06 dB over the same wavelength range. The crosstalk of the LCC is less than 21 dB over the wavelength range 1500 nm to 1630 nm for both bar and cross state. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors

    Get PDF
    This paper discusses free carrier generation by pulsed laser fields as a mechanism to switch the optical properties of semiconductor photonic crystals and bulk semiconductors on an ultrafast time scale. Requirements are set for the switching magnitude, the time-scale, the induced absorption as well as the spatial homogeneity, in particular for silicon at lambda= 1550 nm. Using a nonlinear absorption model, we calculate carrier depth profiles and define a homogeneity length l_hom. Homogeneity length contours are visualized in a plane spanned by the linear and two-photon absorption coefficients. Such a generalized homogeneity plot allows us to find optimum switching conditions at pump frequencies near v/c= 5000 cm^{-1} (lambda= 2000 nm). We discuss the effect of scattering in photonic crystals on the homogeneity. We experimentally demonstrate a 10% refractive index switch in bulk silicon within 230 fs with a lateral homogeneity of more than 30 micrometers. Our results are relevant for switching of modulators in absence of photonic crystals

    Chalcogenide Glass-on-Graphene Photonics

    Get PDF
    Two-dimensional (2-D) materials are of tremendous interest to integrated photonics given their singular optical characteristics spanning light emission, modulation, saturable absorption, and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. In this paper, we present a new route for 2-D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material which can be directly deposited and patterned on a wide variety of 2-D materials and can simultaneously function as the light guiding medium, a gate dielectric, and a passivation layer for 2-D materials. Besides claiming improved fabrication yield and throughput compared to the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2-D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared (mid-IR) waveguide-integrated photodetectors and modulators

    Automated routing and control of silicon photonic switch fabrics

    Get PDF
    Automatic reconfiguration and feedback controlled routing is demonstrated in an 8Ă—8 silicon photonic switch fabric based on Mach-Zehnder interferometers. The use of non-invasive Contactless Integrated Photonic Probes (CLIPPs) enables real-time monitoring of the state of each switching element individually. Local monitoring provides direct information on the routing path, allowing an easy sequential tuning and feedback controlled stabilization of the individual switching elements, thus making the switch fabric robust against thermal crosstalk, even in the absence of a cooling system for the silicon chip. Up to 24 CLIPPs are interrogated by a multichannel integrated ASIC wire-bonded to the photonic chip. Optical routing is demonstrated on simultaneous WDM input signals that are labelled directly on-chip by suitable pilot tones without affecting the quality of the signals. Neither preliminary circuit calibration nor lookup tables are required, being the proposed control scheme inherently insensible to channels power fluctuations

    Devices and architectures for large scale integrated silicon photonics circuits

    Get PDF
    We present DWDM nanophotonics architectures based on microring resonator modulators and detectors. We focus on two implementations: an on chip interconnect for multicore processor (Corona) and a high radix network switch (HyperX). Based on the requirements of these applications we discuss the key constraints on the photonic circuits' devices and fabrication techniques as well as strategies to improve their performance
    • …
    corecore