889 research outputs found

    Deep Contextualized Acoustic Representations For Semi-Supervised Speech Recognition

    Full text link
    We propose a novel approach to semi-supervised automatic speech recognition (ASR). We first exploit a large amount of unlabeled audio data via representation learning, where we reconstruct a temporal slice of filterbank features from past and future context frames. The resulting deep contextualized acoustic representations (DeCoAR) are then used to train a CTC-based end-to-end ASR system using a smaller amount of labeled audio data. In our experiments, we show that systems trained on DeCoAR consistently outperform ones trained on conventional filterbank features, giving 42% and 19% relative improvement over the baseline on WSJ eval92 and LibriSpeech test-clean, respectively. Our approach can drastically reduce the amount of labeled data required; unsupervised training on LibriSpeech then supervision with 100 hours of labeled data achieves performance on par with training on all 960 hours directly. Pre-trained models and code will be released online.Comment: Accepted to ICASSP 2020 (oral

    Realizing Petabyte Scale Acoustic Modeling

    Full text link
    Large scale machine learning (ML) systems such as the Alexa automatic speech recognition (ASR) system continue to improve with increasing amounts of manually transcribed training data. Instead of scaling manual transcription to impractical levels, we utilize semi-supervised learning (SSL) to learn acoustic models (AM) from the vast firehose of untranscribed audio data. Learning an AM from 1 Million hours of audio presents unique ML and system design challenges. We present the design and evaluation of a highly scalable and resource efficient SSL system for AM. Employing the student/teacher learning paradigm, we focus on the student learning subsystem: a scalable and robust data pipeline that generates features and targets from raw audio, and an efficient model pipeline, including the distributed trainer, that builds a student model. Our evaluations show that, even without extensive hyper-parameter tuning, we obtain relative accuracy improvements in the 10 to 20%\% range, with higher gains in noisier conditions. The end-to-end processing time of this SSL system was 12 days, and several components in this system can trivially scale linearly with more compute resources.Comment: 2156-3357 \copyright 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more informatio

    The NTNU System at the Interspeech 2020 Non-Native Children's Speech ASR Challenge

    Full text link
    This paper describes the NTNU ASR system participating in the Interspeech 2020 Non-Native Children's Speech ASR Challenge supported by the SIG-CHILD group of ISCA. This ASR shared task is made much more challenging due to the coexisting diversity of non-native and children speaking characteristics. In the setting of closed-track evaluation, all participants were restricted to develop their systems merely based on the speech and text corpora provided by the organizer. To work around this under-resourced issue, we built our ASR system on top of CNN-TDNNF-based acoustic models, meanwhile harnessing the synergistic power of various data augmentation strategies, including both utterance- and word-level speed perturbation and spectrogram augmentation, alongside a simple yet effective data-cleansing approach. All variants of our ASR system employed an RNN-based language model to rescore the first-pass recognition hypotheses, which was trained solely on the text dataset released by the organizer. Our system with the best configuration came out in second place, resulting in a word error rate (WER) of 17.59 %, while those of the top-performing, second runner-up and official baseline systems are 15.67%, 18.71%, 35.09%, respectively.Comment: Submitted to Interspeech 2020 Special Session: Shared Task on Automatic Speech Recognition for Non-Native Children's Speec

    Lessons from Building Acoustic Models with a Million Hours of Speech

    Full text link
    This is a report of our lessons learned building acoustic models from 1 Million hours of unlabeled speech, while labeled speech is restricted to 7,000 hours. We employ student/teacher training on unlabeled data, helping scale out target generation in comparison to confidence model based methods, which require a decoder and a confidence model. To optimize storage and to parallelize target generation, we store high valued logits from the teacher model. Introducing the notion of scheduled learning, we interleave learning on unlabeled and labeled data. To scale distributed training across a large number of GPUs, we use BMUF with 64 GPUs, while performing sequence training only on labeled data with gradient threshold compression SGD using 16 GPUs. Our experiments show that extremely large amounts of data are indeed useful; with little hyper-parameter tuning, we obtain relative WER improvements in the 10 to 20% range, with higher gains in noisier conditions.Comment: "Copyright 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

    Improved Noisy Student Training for Automatic Speech Recognition

    Full text link
    Recently, a semi-supervised learning method known as "noisy student training" has been shown to improve image classification performance of deep networks significantly. Noisy student training is an iterative self-training method that leverages augmentation to improve network performance. In this work, we adapt and improve noisy student training for automatic speech recognition, employing (adaptive) SpecAugment as the augmentation method. We find effective methods to filter, balance and augment the data generated in between self-training iterations. By doing so, we are able to obtain word error rates (WERs) 4.2%/8.6% on the clean/noisy LibriSpeech test sets by only using the clean 100h subset of LibriSpeech as the supervised set and the rest (860h) as the unlabeled set. Furthermore, we are able to achieve WERs 1.7%/3.4% on the clean/noisy LibriSpeech test sets by using the unlab-60k subset of LibriLight as the unlabeled set for LibriSpeech 960h. We are thus able to improve upon the previous state-of-the-art clean/noisy test WERs achieved on LibriSpeech 100h (4.74%/12.20%) and LibriSpeech (1.9%/4.1%).Comment: 5 pages, 5 figures, 4 tables; v2: minor revisions, reference adde

    ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context

    Full text link
    Convolutional neural networks (CNN) have shown promising results for end-to-end speech recognition, albeit still behind other state-of-the-art methods in performance. In this paper, we study how to bridge this gap and go beyond with a novel CNN-RNN-transducer architecture, which we call ContextNet. ContextNet features a fully convolutional encoder that incorporates global context information into convolution layers by adding squeeze-and-excitation modules. In addition, we propose a simple scaling method that scales the widths of ContextNet that achieves good trade-off between computation and accuracy. We demonstrate that on the widely used LibriSpeech benchmark, ContextNet achieves a word error rate (WER) of 2.1%/4.6% without external language model (LM), 1.9%/4.1% with LM and 2.9%/7.0% with only 10M parameters on the clean/noisy LibriSpeech test sets. This compares to the previous best published system of 2.0%/4.6% with LM and 3.9%/11.3% with 20M parameters. The superiority of the proposed ContextNet model is also verified on a much larger internal dataset.Comment: Submitted to Interspeech 202

    NAUTILUS: a Versatile Voice Cloning System

    Full text link
    We introduce a novel speech synthesis system, called NAUTILUS, that can generate speech with a target voice either from a text input or a reference utterance of an arbitrary source speaker. By using a multi-speaker speech corpus to train all requisite encoders and decoders in the initial training stage, our system can clone unseen voices using untranscribed speech of target speakers on the basis of the backpropagation algorithm. Moreover, depending on the data circumstance of the target speaker, the cloning strategy can be adjusted to take advantage of additional data and modify the behaviors of text-to-speech (TTS) and/or voice conversion (VC) systems to accommodate the situation. We test the performance of the proposed framework by using deep convolution layers to model the encoders, decoders and WaveNet vocoder. Evaluations show that it achieves comparable quality with state-of-the-art TTS and VC systems when cloning with just five minutes of untranscribed speech. Moreover, it is demonstrated that the proposed framework has the ability to switch between TTS and VC with high speaker consistency, which will be useful for many applications.Comment: Submitted to The IEEE/ACM Transactions on Audio, Speech, and Language Processin

    Automatic Data Expansion for Customer-care Spoken Language Understanding

    Full text link
    Spoken language understanding (SLU) systems are widely used in handling of customer-care calls.A traditional SLU system consists of an acoustic model (AM) and a language model (LM) that areused to decode the utterance and a natural language understanding (NLU) model that predicts theintent. While AM can be shared across different domains, LM and NLU models need to be trainedspecifically for every new task. However, preparing enough data to train these models is prohibitivelyexpensive. In this paper, we introduce an efficient method to expand the limited in-domain data. Theprocess starts with training a preliminary NLU model based on logistic regression on the in-domaindata. Since the features are based onn= 1,2-grams, we can detect the most informative n-gramsfor each intent class. Using these n-grams, we find the samples in the out-of-domain corpus that1) contain the desired n-gram and/or 2) have similar intent label. The ones which meet the firstconstraint are used to train a new LM model and the ones that meet both constraints are used to train anew NLU model. Our results on two divergent experimental setups show that the proposed approachreduces by 30% the absolute classification error rate (CER) comparing to the preliminary modelsand it significantly outperforms the traditional data expansion algorithms such as the ones based onsemi-supervised learning, TF-IDF and embedding vectors.Comment: 10 pages, 4 figures, 5 tabel

    Listening while Speaking: Speech Chain by Deep Learning

    Full text link
    Despite the close relationship between speech perception and production, research in automatic speech recognition (ASR) and text-to-speech synthesis (TTS) has progressed more or less independently without exerting much mutual influence on each other. In human communication, on the other hand, a closed-loop speech chain mechanism with auditory feedback from the speaker's mouth to her ear is crucial. In this paper, we take a step further and develop a closed-loop speech chain model based on deep learning. The sequence-to-sequence model in close-loop architecture allows us to train our model on the concatenation of both labeled and unlabeled data. While ASR transcribes the unlabeled speech features, TTS attempts to reconstruct the original speech waveform based on the text from ASR. In the opposite direction, ASR also attempts to reconstruct the original text transcription given the synthesized speech. To the best of our knowledge, this is the first deep learning model that integrates human speech perception and production behaviors. Our experimental results show that the proposed approach significantly improved the performance more than separate systems that were only trained with labeled data

    Toward domain-invariant speech recognition via large scale training

    Full text link
    Current state-of-the-art automatic speech recognition systems are trained to work in specific `domains', defined based on factors like application, sampling rate and codec. When such recognizers are used in conditions that do not match the training domain, performance significantly drops. This work explores the idea of building a single domain-invariant model for varied use-cases by combining large scale training data from multiple application domains. Our final system is trained using 162,000 hours of speech. Additionally, each utterance is artificially distorted during training to simulate effects like background noise, codec distortion, and sampling rates. Our results show that, even at such a scale, a model thus trained works almost as well as those fine-tuned to specific subsets: A single model can be robust to multiple application domains, and variations like codecs and noise. More importantly, such models generalize better to unseen conditions and allow for rapid adaptation -- we show that by using as little as 10 hours of data from a new domain, an adapted domain-invariant model can match performance of a domain-specific model trained from scratch using 70 times as much data. We also highlight some of the limitations of such models and areas that need addressing in future work
    • …
    corecore