930 research outputs found

    Large-Scale Pairwise Sequence Alignments on a Large-Scale GPU Cluster

    Get PDF
    This paper presents design of a GPU kernel for performing pairwise sequence alignments for large-scale short sequence datasets generated by nextgeneration sequencers. This kernel principally performs batch Needleman– Wunsch global alignments. When used with its MPI-based host software, the kernel is scalable and is capable of achieving high throughput alignment when run on a CPU-GPU cluster

    The Parallelism Motifs of Genomic Data Analysis

    Get PDF
    Genomic data sets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share this data with the research community, but some of these genomic data analysis problems require large scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high end parallel systems today and place different requirements on programming support, software libraries, and parallel architectural design. For example, they involve irregular communication patterns such as asynchronous updates to shared data structures. We consider several problems in high performance genomics analysis, including alignment, profiling, clustering, and assembly for both single genomes and metagenomes. We identify some of the common computational patterns or motifs that help inform parallelization strategies and compare our motifs to some of the established lists, arguing that at least two key patterns, sorting and hashing, are missing

    Accelerating exhaustive pairwise metagenomic comparisons

    Get PDF
    In this manuscript, we present an optimized and parallel version of our previous work IMSAME, an exhaustive gapped aligner for the pairwise and accurate comparison of metagenomes. Parallelization strategies are applied to take advantage of modern multiprocessor architectures. In addition, sequential optimizations in CPU time and memory consumption are provided. These algorithmic and computational enhancements enable IMSAME to calculate near optimal alignments which are used to directly assess similarity between metagenomes without requiring reference databases. We show that the overall efficiency of the parallel implementation is superior to 80% while retaining scalability as the number of parallel cores used increases. Moreover, we also show thats equential optimizations yield up to 8x speedup for scenarios with larger data.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Homology sequence analysis using GPU acceleration

    Get PDF
    A number of problems in bioinformatics, systems biology and computational biology field require abstracting physical entities to mathematical or computational models. In such studies, the computational paradigms often involve algorithms that can be solved by the Central Processing Unit (CPU). Historically, those algorithms benefit from the advancements of computing power in the serial processing capabilities of individual CPU cores. However, the growth has slowed down over recent years, as scaling out CPU has been shown to be both cost-prohibitive and insecure. To overcome this problem, parallel computing approaches that employ the Graphics Processing Unit (GPU) have gained attention as complementing or replacing traditional CPU approaches. The premise of this research is to investigate the applicability of various parallel computing platforms to several problems in the detection and analysis of homology in biological sequence. I hypothesize that by exploiting the sheer amount of computation power and sequencing data, it is possible to deduce information from raw sequences without supplying the underlying prior knowledge to come up with an answer. I have developed such tools to perform analysis at scales that are traditionally unattainable with general-purpose CPU platforms. I have developed a method to accelerate sequence alignment on the GPU, and I used the method to investigate whether the Operational Taxonomic Unit (OTU) classification problem can be improved with such sheer amount of computational power. I have developed a method to accelerate pairwise k-mer comparison on the GPU, and I used the method to further develop PolyHomology, a framework to scaffold shared sequence motifs across large numbers of genomes to illuminate the structure of the regulatory network in yeasts. The results suggest that such approach to heterogeneous computing could help to answer questions in biology and is a viable path to new discoveries in the present and the future.Includes bibliographical reference

    Accelerated large-scale multiple sequence alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple sequence alignment (MSA) is a fundamental analysis method used in bioinformatics and many comparative genomic applications. Prior MSA acceleration attempts with reconfigurable computing have only addressed the first stage of progressive alignment and consequently exhibit performance limitations according to Amdahl's Law. This work is the first known to accelerate the third stage of progressive alignment on reconfigurable hardware.</p> <p>Results</p> <p>We reduce subgroups of aligned sequences into discrete profiles before they are pairwise aligned on the accelerator. Using an FPGA accelerator, an overall speedup of up to 150 has been demonstrated on a large data set when compared to a 2.4 GHz Core2 processor.</p> <p>Conclusions</p> <p>Our parallel algorithm and architecture accelerates large-scale MSA with reconfigurable computing and allows researchers to solve the larger problems that confront biologists today. Program source is available from <url>http://dna.cs.byu.edu/msa/</url>.</p

    High Performance Computing for DNA Sequence Alignment and Assembly

    Get PDF
    Recent advances in DNA sequencing technology have dramatically increased the scale and scope of DNA sequencing. These data are used for a wide variety of important biological analyzes, including genome sequencing, comparative genomics, transcriptome analysis, and personalized medicine but are complicated by the volume and complexity of the data involved. Given the massive size of these datasets, computational biology must draw on the advances of high performance computing. Two fundamental computations in computational biology are read alignment and genome assembly. Read alignment maps short DNA sequences to a reference genome to discover conserved and polymorphic regions of the genome. Genome assembly computes the sequence of a genome from many short DNA sequences. Both computations benefit from recent advances in high performance computing to efficiently process the huge datasets involved, including using highly parallel graphics processing units (GPUs) as high performance desktop processors, and using the MapReduce framework coupled with cloud computing to parallelize computation to large compute grids. This dissertation demonstrates how these technologies can be used to accelerate these computations by orders of magnitude, and have the potential to make otherwise infeasible computations practical
    • …
    corecore