1,290 research outputs found

    Large-Scale Indexing, Discovery, and Ranking for the Internet of Things (IoT)

    Get PDF
    Network-enabled sensing and actuation devices are key enablers to connect real-world objects to the cyber world. The Internet of Things (IoT) consists of the network-enabled devices and communication technologies that allow connectivity and integration of physical objects (Things) into the digital world (Internet). Enormous amounts of dynamic IoT data are collected from Internet-connected devices. IoT data are usually multi-variant streams that are heterogeneous, sporadic, multi-modal, and spatio-temporal. IoT data can be disseminated with different granularities and have diverse structures, types, and qualities. Dealing with the data deluge from heterogeneous IoT resources and services imposes new challenges on indexing, discovery, and ranking mechanisms that will allow building applications that require on-line access and retrieval of ad-hoc IoT data. However, the existing IoT data indexing and discovery approaches are complex or centralised, which hinders their scalability. The primary objective of this article is to provide a holistic overview of the state-of-the-art on indexing, discovery, and ranking of IoT data. The article aims to pave the way for researchers to design, develop, implement, and evaluate techniques and approaches for on-line large-scale distributed IoT applications and services

    Sensor Search Techniques for Sensing as a Service Architecture for The Internet of Things

    Get PDF
    The Internet of Things (IoT) is part of the Internet of the future and will comprise billions of intelligent communicating "things" or Internet Connected Objects (ICO) which will have sensing, actuating, and data processing capabilities. Each ICO will have one or more embedded sensors that will capture potentially enormous amounts of data. The sensors and related data streams can be clustered physically or virtually, which raises the challenge of searching and selecting the right sensors for a query in an efficient and effective way. This paper proposes a context-aware sensor search, selection and ranking model, called CASSARAM, to address the challenge of efficiently selecting a subset of relevant sensors out of a large set of sensors with similar functionality and capabilities. CASSARAM takes into account user preferences and considers a broad range of sensor characteristics, such as reliability, accuracy, location, battery life, and many more. The paper highlights the importance of sensor search, selection and ranking for the IoT, identifies important characteristics of both sensors and data capture processes, and discusses how semantic and quantitative reasoning can be combined together. This work also addresses challenges such as efficient distributed sensor search and relational-expression based filtering. CASSARAM testing and performance evaluation results are presented and discussed.Comment: IEEE sensors Journal, 2013. arXiv admin note: text overlap with arXiv:1303.244

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    How to exploit the Social Internet of Things: Query Generation Model and Device Profiles’ Dataset

    Get PDF
    The future Internet of Things (IoT) will be characterized by an increasing number of object-to-object interactions for the implementation of distributed applications running in smart environments. The Social IoT (SIoT) is one of the possible paradigms that is proposed to make the objects’ interactions easier by facilitating the search of services and the management of objects’ trustworthiness. In this scenario, we address the issue of modeling the queries that are generated by the objects when fulfilling applications’ requests that could be provided by any of the peers in the SIoT. To this, the defined model takes into account the objects’ major features in terms of typology and associated functionalities, and the characteristics of the applications. We have then generated a dataset, by extracting objects’ information and positions from the city of Santander in Spain. We have classified all the available devices according to the FIWARE Data Models, so as to enable the portability of the dataset among different platforms. The dataset and the proposed query generation model are made available to the research community to study the navigability of the SIoT network, with an application also to other IoT networks. Experimental analyses have also been conducted, which give some key insights on the impact of the query model parameters on the average number of hops needed for each search

    Semantic-driven Configuration of Internet of Things Middleware

    Get PDF
    We are currently observing emerging solutions to enable the Internet of Things (IoT). Efficient and feature rich IoT middeware platforms are key enablers for IoT. However, due to complexity, most of these middleware platforms are designed to be used by IT experts. In this paper, we propose a semantics-driven model that allows non-IT experts (e.g. plant scientist, city planner) to configure IoT middleware components easier and faster. Such tools allow them to retrieve the data they want without knowing the underlying technical details of the sensors and the data processing components. We propose a Context Aware Sensor Configuration Model (CASCoM) to address the challenge of automated context-aware configuration of filtering, fusion, and reasoning mechanisms in IoT middleware according to the problems at hand. We incorporate semantic technologies in solving the above challenges. We demonstrate the feasibility and the scalability of our approach through a prototype implementation based on an IoT middleware called Global Sensor Networks (GSN), though our model can be generalized into any other middleware platform. We evaluate CASCoM in agriculture domain and measure both performance in terms of usability and computational complexity.Comment: 9th International Conference on Semantics, Knowledge & Grids (SKG), Beijing, China, October, 201

    Prikaz znanja u internetu stvari: semantičko modeliranje i njegove primjene

    Get PDF
    Semantic modelling provides a potential basis for interoperating among different systems and applications in the Internet of Things (IoT). However, current work has mostly focused on IoT resource management while not on the access and utilisation of information generated by the “Things”. We present the design of a comprehensive and lightweight semantic description model for knowledge representation in the IoT domain. The design follows the widely recognised best practices in knowledge engineering and ontology modelling. Users are allowed to extend the model by linking to external ontologies, knowledge bases or existing linked data. Scalable access to IoT services and resources is achieved through a distributed, semantic storage design. The usefulness of the model is also illustrated through an IoT service discovery method.Semantičko modeliranje pruĆŸa potencijalnu osnovu za me.udjelovanje različitih sustava i aplikacija unutar interneta stvari (IoT). Međutim, postojeći radovi uglavnom su fokusirani na upravljanje IoT resursima, ali ne i pristupu i koriĆĄtenju informacija koje generira “stvar”. Predstavljamo projektiranje sveobuhvatnog i laganog semantičkog opisnog modela za prikaz znanja u IoT domeni. Projektiranje slijedi ĆĄiroko-priznate najbolje običaje u inĆŸenjerstvu znanja i ontoloĆĄkom modeliranju. Korisnicima se dopuĆĄta proĆĄirenje modela povezivanjem na eksterne ontologije, baze znanja ili postoje će povezane podatke. Skalabilni pristup IoT uslugama i resursima postiĆŸe se kroz distribuirano, semantičko projektiranje pohrane. Upotrebljivost modela tako.er je ilustrirana kroz metodu pronalaska IoT usluga

    Recommendations on the Internet of Things: Requirements, Challenges, and Directions

    Full text link
    © 1997-2012 IEEE. The Internet of Things (IoT) is accelerating the growth of data available on the Internet, which makes the traditional search paradigms incapable of digging the information that people need from massive and deep resources. Furthermore, given the dynamic nature of organizations, social structures, and devices involved in IoT environments, intelligent and automated approaches become critical to support decision makers with the knowledge derived from the vast amount of information available through IoT networks. Indeed, IoT is more desirable of an effective and efficient paradigm of proactive discovering rather than postactive searching. This paper discusses some of the important requirements and key challenges to enable effective and efficient thing-of-interest recommendation and provides an array of new perspectives on IoT recommendation

    When things matter: A survey on data-centric Internet of Things

    Get PDF
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, but several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy and continuous. This paper reviews the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed
    • 

    corecore