22,241 research outputs found

    Hydrogen and fuel cell technologies for heating: A review

    Get PDF
    The debate on low-carbon heat in Europe has become focused on a narrow range of technological options and has largely neglected hydrogen and fuel cell technologies, despite these receiving strong support towards commercialisation in Asia. This review examines the potential benefits of these technologies across different markets, particularly the current state of development and performance of fuel cell micro-CHP. Fuel cells offer some important benefits over other low-carbon heating technologies, and steady cost reductions through innovation are bringing fuel cells close to commercialisation in several countries. Moreover, fuel cells offer wider energy system benefits for high-latitude countries with peak electricity demands in winter. Hydrogen is a zero-carbon alternative to natural gas, which could be particularly valuable for those countries with extensive natural gas distribution networks, but many national energy system models examine neither hydrogen nor fuel cells for heating. There is a need to include hydrogen and fuel cell heating technologies in future scenario analyses, and for policymakers to take into account the full value of the potential contribution of hydrogen and fuel cells to low-carbon energy systems

    Technology roadmap: solar photovoltaic energy - 2014 edition

    Get PDF
    Solar power enhances energy diversity and hedges against price volatility of fossil fuels, thus stabilising costs of electricity generation in the long term, argues this report. Overview Solar energy is widely available throughout the world and can contribute to reduced dependence on energy imports. As it entails no fuel price risk or constraints, it also improves security of supply. Solar power enhances energy diversity and hedges against price volatility of fossil fuels, thus stabilising costs of electricity generation in the long term. Solar PV entails no greenhouse gas (GHG) emissions during operation and does not emit other pollutants (such as oxides of sulphur and nitrogen); additionally, it consumes no or little water. As local air pollution and extensive use of fresh water for cooling of thermal power plants are becoming serious concerns in hot or dry regions, these benefits of solar PV become increasingly important. Key findings: Since 2010, the world has added more solar photovoltaic (PV) capacity than in the previous four decades. Total global capacity overtook 150 gigawatts (GW) in early 2014 The geographical pattern of deployment is rapidly changing. While a few European countries, led by Germany and Italy, initiated large-scale PV development, since 2013, the People’s Republic of China has led the global PV market, followed by Japan and the United States PV system prices have been divided by three in six years in most markets, while module prices have been divided by five This roadmap envisions PV’s share of global electricity reaching 16% by 2050, a significant increase from the 11% goal in the 2010 roadmap Achieving this roadmap’s vision of 4 600 GW of installed PV capacity by 2050 would avoid the emission of up to 4 gigatonnes (Gt) of carbon dioxide (CO2) annually This roadmap assumes that the costs of electricity from PV in different parts of the world will converge as markets develop, with an average cost reduction of 25% by 2020, 45% by 2030, and 65% by 2050, leading to a range of USD 40 to 160/MWh, assuming a cost of capital of 8% To achieve the vision in this roadmap, the total PV capacity installed each year needs to rise from 36 GW in 2013 to 124 GW per year on average, with a peak of 200 GW per year between 2025 and 2040 The variability of the solar resource is a challenge. All flexibility options – including interconnections, demand-side response, flexible generation, and storage –need to be developed to meet this challenge Appropriate regulatory frameworks – and well-designed electricity markets, in particular – will be critical to achieve the vision in this roadmap Levelised cost of electricity from new-built PV systems and generation by sector

    Materials Handling Vehicles : Policy Framework for an Emerging Fuel Cell Market

    Get PDF
    © 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Canadian Hydrogen and Fuel Cell Association. Open access under CC BY-NC-ND licenseThere are several challenges to wide-spread commercialisation of the technology hydrogen fuel-cell technology; including reliability and cost implications, infrastructure requirements, and safety aspects of the upcoming technology. Targeted policy initiatives are required to address two significant bottlenecks; reliability and cost constraints. Such policy measures and financial mechanisms providing incentives for manufacturers and end-users of the novel technology create an initial impetus for the introduction of the forthcoming technology into the market place. The current approach, policy mechanisms and their impacts are reviewed in the context of demonstration projects, deploying material handling equipment, involving public-private initiatives.Final Published versio

    Solar-thermal and hybrid photovoltaic-thermal systems for renewable heating

    Get PDF
    Grantham Briefing Papers analyse climate change and environmental research linked to work at Imperial College London, setting it in the context of national and international policy and the future research agenda. This paper and other Grantham publications are available from: www.imperial.ac.uk/grantham/publicationsThis paper looks at the barriers and opportunities for the mass deployment of solar-thermal technologies and offers a vision for the future of solar-thermal systems. HEADLINES: -Heat constitutes about half of total global energy demand. Solar heat offers key advantages over other renewable sources for meeting this demand through distributed, integrated systems. -Solar heat is a mature sustainable energy technology capable of mass deployment. There is significant scope for increasing the installed solar heat capacity in Europe. -Only a few European countries are close to reaching the EU target of 1 m2 of solar-thermal installations per person. -One key challenge for the further development of the solar-thermal market arises from issues related to the intermittency of the solar resource, and the requirement for storage and/or backup systems. The former increases investment costs and limits adaptability. -An analysis of EU countries with good market development, suggests that obligation schemes are the best policy option for maximising installations. These do not present a direct cost to the public budget, and determine the growth of the local industry in the long term. -Solar-thermal collectors can be combined with photovoltaic (PV) modules to produce hybrid PV-thermal (PV-T) collectors. These can deliver both heat and electricity simultaneously from the same installed area and at a higher overall efficiency compared to individual solar-thermal and PV panels installed separately. --Hybrid PV-T technology provides a particularly promising solution when roof space is limited or when heat and electricity are required at the same time.Preprin

    Assessment of the environmental aspects of the DOE phosphoric acid fuel cell program

    Get PDF
    The likely facets of a nationwide phosphoric acid fuel cell (PAFC) power plant commercial system are described. The beneficial and adverse environmental impacts produced by the system are assessed. Eleven specific system activities are characterized and evaluated. Also included is a review of fuel cell technology and a description of DOE's National Fuel Cell Program. Based on current and reasonably foreseeable PAFC characteristics, no environmental or energy impact factor was identified that would significantly inhibit the commercialization of PAFC power plant technology

    Container network functions: bringing NFV to the network edge

    Get PDF
    In order to cope with the increasing network utilization driven by new mobile clients, and to satisfy demand for new network services and performance guarantees, telecommunication service providers are exploiting virtualization over their network by implementing network services in virtual machines, decoupled from legacy hardware accelerated appliances. This effort, known as NFV, reduces OPEX and provides new business opportunities. At the same time, next generation mobile, enterprise, and IoT networks are introducing the concept of computing capabilities being pushed at the network edge, in close proximity of the users. However, the heavy footprint of today's NFV platforms prevents them from operating at the network edge. In this article, we identify the opportunities of virtualization at the network edge and present Glasgow Network Functions (GNF), a container-based NFV platform that runs and orchestrates lightweight container VNFs, saving core network utilization and providing lower latency. Finally, we demonstrate three useful examples of the platform: IoT DDoS remediation, on-demand troubleshooting for telco networks, and supporting roaming of network functions

    Toward a Sunny Future? Global Integration in the Solar PV Industry

    Get PDF
    Policymakers seem to face a trade-off when designing national trade and investment policies related to clean energy sectors. They have pledged to address climate change and accelerate the large-scale deployment of renewable energy technologies, which would benefit from increased global integration, but they are also tempted to nurture and protect domestic clean technology markets to create green jobs at home and ensure domestic political support for more ambitious climate policies. This paper analyzes the global integration of the solar photovoltaic (PV) sector and looks in detail at the industry’s recent growth patterns, industry cost structure, trade and investment patterns, government support policies and employment generation potential. In order to further stimulate both further growth of the solar industry and local job creation without constructing new trade and investment barriers, we recommend the following: (1) Governments must provide sufficient and predictable long-term support to solar energy deployment. Such long-term frameworks bring investments forward and encourage cost cutting and innovation, so that government support can decrease over time. A price on carbon emissions would provide an additional long-term market signal and likely accelerate this process. (2) Policymakers should focus not on solely the manufacturing jobs in the solar industry, but on the total number of jobs that could possibly be created including those in research, project development, installation, operations and maintenance. (3) Global integration and broader solar PV technology deployment through lower costs can be encouraged by keeping global solar PV markets open. Protectionist policies risk slowing the development of global solar markets and provoking retaliatory actions in other sectors. Lowering existing trade barriers—by abolishing tariffs, reducing non-tariff barriers and harmonizing industry standards—would create a positive policy environment for further global integration.Solar PV, climate change, renewable energy, government support, green protectionism, green jobs, global integration
    • …
    corecore