994 research outputs found

    Bootstrap domain-specific sentiment classifiers from unlabeled corpora

    Get PDF
    There is often the need to perform sentiment classification in a particular domain where no labeled document is available. Although we could make use of a general-purpose off-the-shelf sentiment classifier or a pre-built one for a different domain, the effectiveness would be inferior. In this paper, we explore the possibility of building domain-specific sentiment classifiers with unlabeled documents only. Our investigation indicates that in the word embeddings learned from the unlabeled corpus of a given domain, the distributed word representations (vectors) for opposite sentiments form distinct clusters, though those clusters are not transferable across domains. Exploiting such a clustering structure, we are able to utilize machine learning algorithms to induce a quality domain-specific sentiment lexicon from just a few typical sentiment words ("seeds"). An important finding is that simple linear model based supervised learning algorithms (such as linear SVM) can actually work better than more sophisticated semi-supervised/transductive learning algorithms which represent the state-of-the-art technique for sentiment lexicon induction. The induced lexicon could be applied directly in a lexicon-based method for sentiment classification, but a higher performance could be achieved through a two-phase bootstrapping method which uses the induced lexicon to assign positive/negative sentiment scores to unlabeled documents first, and then uses those documents found to have clear sentiment signals as pseudo-labeled examples to train a document sentiment classifier via supervised learning algorithms (such as LSTM). On several benchmark datasets for document sentiment classification, our end-to-end pipelined approach which is overall unsupervised (except for a tiny set of seed words) outperforms existing unsupervised approaches and achieves an accuracy comparable to that of fully supervised approaches

    Supervised learning with quantum enhanced feature spaces

    Full text link
    Machine learning and quantum computing are two technologies each with the potential for altering how computation is performed to address previously untenable problems. Kernel methods for machine learning are ubiquitous for pattern recognition, with support vector machines (SVMs) being the most well-known method for classification problems. However, there are limitations to the successful solution to such problems when the feature space becomes large, and the kernel functions become computationally expensive to estimate. A core element to computational speed-ups afforded by quantum algorithms is the exploitation of an exponentially large quantum state space through controllable entanglement and interference. Here, we propose and experimentally implement two novel methods on a superconducting processor. Both methods represent the feature space of a classification problem by a quantum state, taking advantage of the large dimensionality of quantum Hilbert space to obtain an enhanced solution. One method, the quantum variational classifier builds on [1,2] and operates through using a variational quantum circuit to classify a training set in direct analogy to conventional SVMs. In the second, a quantum kernel estimator, we estimate the kernel function and optimize the classifier directly. The two methods present a new class of tools for exploring the applications of noisy intermediate scale quantum computers [3] to machine learning.Comment: Fixed typos, added figures and discussion about quantum error mitigatio

    Confidence based active learning for vehicle classification in urban traffic

    Get PDF
    This paper presents a framework for confidence based active learning for vehicle classification in an urban traffic environment. Vehicles are automatically detected using an improved background subtraction algorithm using a Gaussian mixture model. A vehicle observation vector is constructed from measurement-based features and an intensity-based pyramid HOG. The output scores of a linear SVM classifier are accurately calibrated to probabilities using an interpolated dynamic bin width histogram. The confidence value of each sample is measured by its probabilities. Thus, only a small number of low confidence samples need to be identified and annotated according to their confidence. Compared to passive learning, the number of annotated samples needed for the training dataset can be reduced significantly, yielding a high accuracy classifier with low computational complexity and high efficiency. The detected vehicles are classified into four main categories: car, van, bus and motorcycle. Experimental results demonstrate the effectiveness and efficiency of our approach. The method is general enough so that it can be used in other classification problems and domains, e.g. pedestrian detection

    Deep Generative Models for Reject Inference in Credit Scoring

    Get PDF
    Credit scoring models based on accepted applications may be biased and their consequences can have a statistical and economic impact. Reject inference is the process of attempting to infer the creditworthiness status of the rejected applications. In this research, we use deep generative models to develop two new semi-supervised Bayesian models for reject inference in credit scoring, in which we model the data generating process to be dependent on a Gaussian mixture. The goal is to improve the classification accuracy in credit scoring models by adding reject applications. Our proposed models infer the unknown creditworthiness of the rejected applications by exact enumeration of the two possible outcomes of the loan (default or non-default). The efficient stochastic gradient optimization technique used in deep generative models makes our models suitable for large data sets. Finally, the experiments in this research show that our proposed models perform better than classical and alternative machine learning models for reject inference in credit scoring
    corecore