578 research outputs found

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    ABE-Cities: An attribute-based encryption system for smart cities

    Get PDF
    In the near future, a technological revolution will involve our cities, where a variety of smart services based on the Internet of Things will be developed to facilitate the needs of the citizens. Sensing devices are already being deployed in urban environments, and they will generate huge amounts of data. Such data are typically outsourced to some cloud storage because this lowers capital and operating expenses and guarantees high availability. However, cloud storage may have incentives to release stored data to unauthorized entities. In this work we present ABE-Cities, an encryption scheme for urban sensing which solves the above problems while ensuring fine-grained access control on data by means of Attribute-Based Encryption (ABE). Basically, ABE-Cities encrypts data before storing it in the cloud and provides users with keys able to decrypt only those portions of data the user is authorized to access. In ABE-Cities, the sensing devices perform only lightweight symmetric cryptography operations, thus they can also be resource-constrained. ABE-Cities provides planned expiration of keys, as well as their unplanned revocation. We propose methods to make the key revocation efficient, and we show by simulations the overall efficiency of ABE-Cities

    A secure IoT cloud storage system with fine-grained access control and decryption key exposure resistance

    Get PDF
    Internet of Things (IoT) cloud provides a practical and scalable solution to accommodate the data management in large-scale IoT systems by migrating the data storage and management tasks to cloud service providers (CSPs). However, there also exist many data security and privacy issues that must be well addressed in order to allow the wide adoption of the approach. To protect data confidentiality, attribute-based cryptosystems have been proposed to provide fine-grained access control over encrypted data in IoT cloud. Unfortunately, the existing attributed-based solutions are still insufficient in addressing some challenging security problems, especially when dealing with compromised or leaked user secret keys due to different reasons. In this paper, we present a practical attribute-based access control system for IoT cloud by introducing an efficient revocable attribute-based encryption scheme that permits the data owner to efficiently manage the credentials of data users. Our proposed system can efficiently deal with both secret key revocation for corrupted users and accidental decryption key exposure for honest users. We analyze the security of our scheme with formal proofs, and demonstrate the high performance of the proposed system via experiments

    An Innovative Approach for Enhancing Cloud Data Security using Attribute based Encryption and ECC

    Get PDF
    Cloud computing is future for upcoming generations. Nowadays various companies are looking to use Cloud computing services, as it may benefit them in terms of price, reliability and unlimited storage capacity. Providing security and privacy protection for the cloud data is one of the most difficult task in recent days. One of the measures which customers can take care of is to encrypt their data before it is stored on the cloud. Recently, the attribute-based encryption (ABE) is a popular solution to achieve secure data transmission and storage in the cloud computing. In this paper, an efficient hybrid approach using attribute-based encryption scheme and ECC is proposed to enhance the security and privacy issues in cloud. Here, the proposed scheme is based on Cipher text-Policy Attribute Based Encryption (CP-ABE) without bilinear pairing operations. In this approach, the computation-intensive bilinear pairing operation is replaced by the scalar multiplication on elliptic curves. Experimental results show that the proposed scheme has good cryptographic properties, and high security level which depends in the difficulty to solve the discrete logarithm problem on elliptic curves (ECDLP)

    Fully Secure and Efficient Data Sharing with Attribute Revocation for Multi-Owner Cloud Storage

    Get PDF
    Now a days, a lot of users are storing their data’s in cloud, because it provides storage flexibility. But the main problem in cloud is data security. Cipher text-Policy Attribute-based Encryption (CP-ABE) is regarded as one of the most suitable technologies for data access control in cloud storage, because it gives data owners more direct control on access policies. In this work to propose a data access control for multi-authority for verifying the integrity of an un-trusted and outsourced storage by third party auditor. In addition, this project propose method based on probabilistic query and periodic verification for improving the performance of audit services. It ensures efficiency of security by protecting from unauthorized users. These experimental results not only validate the effectiveness of these approaches, but also show our audit system verifies the integrity with lower computation overhead and requiring less extra storage for audit metadata. DOI: 10.17762/ijritcc2321-8169.15028

    A HYBRIDIZED ENCRYPTION SCHEME BASED ON ELLIPTIC CURVE CRYPTOGRAPHY FOR SECURING DATA IN SMART HEALTHCARE

    Get PDF
    Recent developments in smart healthcare have brought us a great deal of convenience. Connecting common objects to the Internet is made possible by the Internet of Things (IoT). These connected gadgets have sensors and actuators for data collection and transfer. However, if users' private health information is compromised or exposed, it will seriously harm their privacy and may endanger their lives. In order to encrypt data and establish perfectly alright access control for such sensitive information, attribute-based encryption (ABE) has typically been used. Traditional ABE, however, has a high processing overhead. As a result, an effective security system algorithm based on ABE and Fully Homomorphic Encryption (FHE) is developed to protect health-related data. ABE is a workable option for one-to-many communication and perfectly alright access management of encrypting data in a cloud environment. Without needing to decode the encrypted data, cloud servers can use the FHE algorithm to take valid actions on it. Because of its potential to provide excellent security with a tiny key size, elliptic curve cryptography (ECC) algorithm is also used. As a result, when compared to related existing methods in the literature, the suggested hybridized algorithm (ABE-FHE-ECC) has reduced computation and storage overheads. A comprehensive safety evidence clearly shows that the suggested method is protected by the Decisional Bilinear Diffie-Hellman postulate. The experimental results demonstrate that this system is more effective for devices with limited resources than the conventional ABE when the system’s performance is assessed by utilizing standard model
    • …
    corecore