39 research outputs found

    Multilingual unsupervised word alignment models and their application

    Get PDF
    Word alignment is an essential task in natural language processing because of its critical role in training statistical machine translation (SMT) models, error analysis for neural machine translation (NMT), building bilingual lexicon, and annotation transfer. In this thesis, we explore models for word alignment, how they can be extended to incorporate linguistically-motivated alignment types, and how they can be neuralized in an end-to-end fashion. In addition to these methodological developments, we apply our word alignment models to cross-lingual part-of-speech projection. First, we present a new probabilistic model for word alignment where word alignments are associated with linguistically-motivated alignment types. We propose a novel task of joint prediction of word alignment and alignment types and propose novel semi-supervised learning algorithms for this task. We also solve a sub-task of predicting the alignment type given an aligned word pair. The proposed joint generative models (alignment-type-enhanced models) significantly outperform the models without alignment types in terms of word alignment and translation quality. Next, we present an unsupervised neural Hidden Markov Model for word alignment, where emission and transition probabilities are modeled using neural networks. The model is simpler in structure, allows for seamless integration of additional context, and can be used in an end-to-end neural network. Finally, we tackle the part-of-speech tagging task for the zero-resource scenario where no part-of-speech (POS) annotated training data is available. We present a cross-lingual projection approach where neural HMM aligners are used to obtain high quality word alignments between resource-poor and resource-rich languages. Moreover, high quality neural POS taggers are used to provide annotations for the resource-rich language side of the parallel data, as well as to train a tagger on the projected data. Our experimental results on truly low-resource languages show that our methods outperform their corresponding baselines

    One Model to Rule them all: Multitask and Multilingual Modelling for Lexical Analysis

    Get PDF
    When learning a new skill, you take advantage of your preexisting skills and knowledge. For instance, if you are a skilled violinist, you will likely have an easier time learning to play cello. Similarly, when learning a new language you take advantage of the languages you already speak. For instance, if your native language is Norwegian and you decide to learn Dutch, the lexical overlap between these two languages will likely benefit your rate of language acquisition. This thesis deals with the intersection of learning multiple tasks and learning multiple languages in the context of Natural Language Processing (NLP), which can be defined as the study of computational processing of human language. Although these two types of learning may seem different on the surface, we will see that they share many similarities. The traditional approach in NLP is to consider a single task for a single language at a time. However, recent advances allow for broadening this approach, by considering data for multiple tasks and languages simultaneously. This is an important approach to explore further as the key to improving the reliability of NLP, especially for low-resource languages, is to take advantage of all relevant data whenever possible. In doing so, the hope is that in the long term, low-resource languages can benefit from the advances made in NLP which are currently to a large extent reserved for high-resource languages. This, in turn, may then have positive consequences for, e.g., language preservation, as speakers of minority languages will have a lower degree of pressure to using high-resource languages. In the short term, answering the specific research questions posed should be of use to NLP researchers working towards the same goal.Comment: PhD thesis, University of Groninge

    Development and Design of Deep Learning-based Parts-of-Speech Tagging System for Azerbaijani language

    Get PDF
    Parts-of-Speech (POS) tagging, also referred to as word-class disambiguation, is one of the prerequisite techniques that are used as part of the advanced pre-processing stage across pipeline at the majority of natural language processing (NLP) applications. By using this tool as a preliminary step, most NLP software, such as Chat Bots, Translating Engines, Voice Recognitions, etc., assigns a prior part of speech to each word in the given data in order to identify or distinguish the grammatical category, so they can easily decipher the meaning of the word. This thesis addresses the novel approach to the issue related to the clarification of word context for the Azerbaijani language by using a deep learning-based automatic speech tagger on a clean (manually annotated) dataset. Azerbaijani is a member of the Turkish family and an agglutinative language. In contrast to other languages, recent research studies of speech taggers for the Azerbaijani language were unable to deliver efficient state of the art accuracy. Thus, in this thesis, study is being conducted to investigate how deep learning strategies such as simple recurrent neural networks (RNN), long short-term memory (LSTM), bi-directional long short-term memory (Bi-LSTM), and gated recurrent unit (GRU) might be used to enhance the POS tagging capabilities of the Azerbaijani language

    Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation

    Get PDF
    Peer reviewe

    Robust input representations for low-resource information extraction

    Get PDF
    Recent advances in the field of natural language processing were achieved with deep learning models. This led to a wide range of new research questions concerning the stability of such large-scale systems and their applicability beyond well-studied tasks and datasets, such as information extraction in non-standard domains and languages, in particular, in low-resource environments. In this work, we address these challenges and make important contributions across fields such as representation learning and transfer learning by proposing novel model architectures and training strategies to overcome existing limitations, including a lack of training resources, domain mismatches and language barriers. In particular, we propose solutions to close the domain gap between representation models by, e.g., domain-adaptive pre-training or our novel meta-embedding architecture for creating a joint representations of multiple embedding methods. Our broad set of experiments demonstrates state-of-the-art performance of our methods for various sequence tagging and classification tasks and highlight their robustness in challenging low-resource settings across languages and domains.Die jüngsten Fortschritte auf dem Gebiet der Verarbeitung natürlicher Sprache wurden mit Deep-Learning-Modellen erzielt. Dies führte zu einer Vielzahl neuer Forschungsfragen bezüglich der Stabilität solcher großen Systeme und ihrer Anwendbarkeit über gut untersuchte Aufgaben und Datensätze hinaus, wie z. B. die Informationsextraktion für Nicht-Standardsprachen, aber auch Textdomänen und Aufgaben, für die selbst im Englischen nur wenige Trainingsdaten zur Verfügung stehen. In dieser Arbeit gehen wir auf diese Herausforderungen ein und leisten wichtige Beiträge in Bereichen wie Repräsentationslernen und Transferlernen, indem wir neuartige Modellarchitekturen und Trainingsstrategien vorschlagen, um bestehende Beschränkungen zu überwinden, darunter fehlende Trainingsressourcen, ungesehene Domänen und Sprachbarrieren. Insbesondere schlagen wir Lösungen vor, um die Domänenlücke zwischen Repräsentationsmodellen zu schließen, z.B. durch domänenadaptives Vortrainieren oder unsere neuartige Meta-Embedding-Architektur zur Erstellung einer gemeinsamen Repräsentation mehrerer Embeddingmethoden. Unsere umfassende Evaluierung demonstriert die Leistungsfähigkeit unserer Methoden für verschiedene Klassifizierungsaufgaben auf Word und Satzebene und unterstreicht ihre Robustheit in anspruchsvollen, ressourcenarmen Umgebungen in verschiedenen Sprachen und Domänen

    Modeling Language Variation and Universals: A Survey on Typological Linguistics for Natural Language Processing

    Get PDF
    Linguistic typology aims to capture structural and semantic variation across the world's languages. A large-scale typology could provide excellent guidance for multilingual Natural Language Processing (NLP), particularly for languages that suffer from the lack of human labeled resources. We present an extensive literature survey on the use of typological information in the development of NLP techniques. Our survey demonstrates that to date, the use of information in existing typological databases has resulted in consistent but modest improvements in system performance. We show that this is due to both intrinsic limitations of databases (in terms of coverage and feature granularity) and under-employment of the typological features included in them. We advocate for a new approach that adapts the broad and discrete nature of typological categories to the contextual and continuous nature of machine learning algorithms used in contemporary NLP. In particular, we suggest that such approach could be facilitated by recent developments in data-driven induction of typological knowledge

    Advances in Automatic Keyphrase Extraction

    Get PDF
    The main purpose of this thesis is to analyze and propose new improvements in the field of Automatic Keyphrase Extraction, i.e., the field of automatically detecting the key concepts in a document. We will discuss, in particular, supervised machine learning algorithms for keyphrase extraction, by first identifying their shortcomings and then proposing new techniques which exploit contextual information to overcome them. Keyphrase extraction requires that the key concepts, or \emph{keyphrases}, appear verbatim in the body of the document. We will identify the fact that current algorithms do not use contextual information when detecting keyphrases as one of the main shortcomings of supervised keyphrase extraction. Instead, statistical and positional cues, like the frequency of the candidate keyphrase or its first appearance in the document, are mainly used to determine if a phrase appearing in a document is a keyphrase or not. For this reason, we will prove that a supervised keyphrase extraction algorithm, by using only statistical and positional features, is actually able to extract good keyphrases from documents written in languages that it has never seen. The algorithm will be trained over a common dataset for the English language, a purpose-collected dataset for the Arabic language, and evaluated on the Italian, Romanian and Portuguese languages as well. This result is then used as a starting point to develop new algorithms that use contextual information to increase the performance in automatic keyphrase extraction. The first algorithm that we present uses new linguistics features based on anaphora resolution, which is a field of natural language processing that exploits the relations between elements of the discourse as, e.g., pronouns. We evaluate several supervised AKE pipelines based on these features on the well-known SEMEVAL 2010 dataset, and we show that the performance increases when we add such features to a model that employs statistical and positional knowledge only. Finally, we investigate the possibilities offered by the field of Deep Learning, by proposing six different deep neural networks that perform automatic keyphrase extraction. Such networks are based on bidirectional long-short term memory networks, or on convolutional neural networks, or on a combination of both of them, and on a neural language model which creates a vector representation of each word of the document. These networks are able to learn new features using the the whole document when extracting keyphrases, and they have the advantage of not needing a corpus after being trained to extract keyphrases from new documents. We show that with deep learning based architectures we are able to outperform several other keyphrase extraction algorithms, both supervised and not supervised, used in literature and that the best performances are obtained when we build an additional neural representation of the input document and we append it to the neural language model. Both the anaphora-based and the deep-learning based approaches show that using contextual information, the performance in supervised algorithms for automatic keyphrase extraction improves. In fact, in the methods presented in this thesis, the algorithms which obtained the best performance are the ones receiving more contextual information, both about the relations of the potential keyphrase with other parts of the document, as in the anaphora based approach, and in the shape of a neural representation of the input document, as in the deep learning approach. In contrast, the approach of using statistical and positional knowledge only allows the building of language agnostic keyphrase extraction algorithms, at the cost of decreased precision and recall

    Supervised Training on Synthetic Languages: A Novel Framework for Unsupervised Parsing

    Get PDF
    This thesis focuses on unsupervised dependency parsing—parsing sentences of a language into dependency trees without accessing the training data of that language. Different from most prior work that uses unsupervised learning to estimate the parsing parameters, we estimate the parameters by supervised training on synthetic languages. Our parsing framework has three major components: Synthetic language generation gives a rich set of training languages by mix-and-match over the real languages; surface-form feature extraction maps an unparsed corpus of a language into a fixed-length vector as the syntactic signature of that language; and, finally, language-agnostic parsing incorporates the syntactic signature during parsing so that the decision on each word token is reliant upon the general syntax of the target language. The fundamental question we are trying to answer is whether some useful information about the syntax of a language could be inferred from its surface-form evidence (unparsed corpus). This is the same question that has been implicitly asked by previous papers on unsupervised parsing, which only assumes an unparsed corpus to be available for the target language. We show that, indeed, useful features of the target language can be extracted automatically from an unparsed corpus, which consists only of gold part-of-speech (POS) sequences. Providing these features to our neural parser enables it to parse sequences like those in the corpus. Strikingly, our system has no supervision in the target language. Rather, it is a multilingual system that is trained end-to-end on a variety of other languages, so it learns a feature extractor that works well. This thesis contains several large-scale experiments requiring hundreds of thousands of CPU-hours. To our knowledge, this is the largest study of unsupervised parsing yet attempted. We show experimentally across multiple languages: (1) Features computed from the unparsed corpus improve parsing accuracy. (2) Including thousands of synthetic languages in the training yields further improvement. (3) Despite being computed from unparsed corpora, our learned task-specific features beat previous works’ interpretable typological features that require parsed corpora or expert categorization of the language
    corecore