4,504 research outputs found

    Modeling and Analysis of Power Processing Systems (MAPPS). Volume 1: Technical report

    Get PDF
    Computer aided design and analysis techniques were applied to power processing equipment. Topics covered include: (1) discrete time domain analysis of switching regulators for performance analysis; (2) design optimization of power converters using augmented Lagrangian penalty function technique; (3) investigation of current-injected multiloop controlled switching regulators; and (4) application of optimization for Navy VSTOL energy power system. The generation of the mathematical models and the development and application of computer aided design techniques to solve the different mathematical models are discussed. Recommendations are made for future work that would enhance the application of the computer aided design techniques for power processing systems

    STUDY OF FULLY-INTEGRATED LOW-DROPOUT REGULATORS

    Get PDF
    Department of Electrical EngineeringThis thesis focuses on the introduction of fully-integrated low-dropout regulators (LDOs). Recently, for the mobile and internet-of-things applications, the level of integration is getting higher. LDOs get popular in integrated circuit design including functions such as reducing switching ripples from high-efficiency regulators, cancelling spurs from other loads, and giving different supply voltages to loads. In accordance with load applications, choosing proper LDOs is important. LDOs can be classified by the types of power MOSEFT, the topologies of error amplifier, and the locations of dominant pole. Analog loads such as voltage-controlled oscillators and analog-to-digital converters need LDOs that have high power-supply-rejection-ratio (PSRR), high accuracy, and low noise. Digital loads such as DRAM and CPU need fast transient response, a wide range of load current providable LDOs. As an example, we present the design procedure of a fully-integrated LDO that obtains the desired PSRR. In analog LDOs, we discuss advanced techniques such as local positive feedback loop and zero path that can improve stability and PSRR performance. In digital LDOs, the techniques to improve transient response are introduced. In analog-digital hybrid LDOs, to achieve both fast transient and high PSRR performance in a fully-integrated chip, how to optimally combine analog and digital LDOs is considered based on the characteristics of each LDO type. The future work is extracted from the considerations and limitations of conventional techniques.clos

    Digital Current-Control Schemes

    Get PDF
    The paper is about comparing the performance of digital signal processor-based current controllers for three-phase active power filters. The wide use of nonlinear loads, such as front-end rectifiers connected to the power distribution systems for dc supply or inverter-based applications, causes significant power quality degradation in power distribution networks in terms of current/voltage harmonics, power factor, and resonance problems. Passive LC filters (together with capacitor banks for reactive power compensation) are simple, low-cost, and high-efficiency solution

    Synchronverter-Enabled DC Power Sharing Approach for LVDC Microgrids

    Get PDF

    Modeling and stability analysis of LCL-type grid-connected inverters:A comprehensive overview

    Get PDF

    DC Microgrids – Part I:A Review of Control Strategies and Stabilization Techniques

    Get PDF

    Input filter compensation for switching regulators

    Get PDF
    Problems caused by input filter interaction and conventional input filter design techniques are discussed. The concept of feedforward control is modeled with an input filter and a buck regulator. Experimental measurement and comparison to the analytical predictions is carried out. Transient response and the use of a feedforward loop to stabilize the regulator system is described. Other possible applications for feedforward control are included
    corecore