212 research outputs found

    Survey of semi-regular multiresolution models for interactive terrain rendering

    Get PDF
    Rendering high quality digital terrains at interactive rates requires carefully crafted algorithms and data structures able to balance the competing requirements of realism and frame rates, while taking into account the memory and speed limitations of the underlying graphics platform. In this survey, we analyze multiresolution approaches that exploit a certain semi-regularity of the data. These approaches have produced some of the most efficient systems to date. After providing a short background and motivation for the methods, we focus on illustrating models based on tiled blocks and nested regular grids, quadtrees and triangle bin-trees triangulations, as well as cluster-based approaches. We then discuss LOD error metrics and system-level data management aspects of interactive terrain visualization, including dynamic scene management, out-of-core data organization and compression, as well as numerical accurac

    Cached Geometry Manager for View-dependent LOD Rendering

    Full text link
    The new generation of commodity graphics cards with significant on-board video memory has become widely popular and provides high-performance rendering and flexibility. One of the features to be exploited with this hardware is the use of the on-board video memory to store geometry information. This strategy significantly reduces the data transfer overhead from sending geometry data over the (AGP) bus interface from main memory to the graphics card. However, taking advantage of cached geometry is not a trivial task because the data models often exceed the memory size of the graphics card. In this paper we present a dynamic Cached Geometry Manager (CGM) to address this issue. We show how this technique improves the performance of real-time view-dependent level-of-detail (LOD) selection and rendering algorithms of large data sets. Alternative caching approaches have been analyzed over two different view-dependent progressive mesh (VDPM) frameworks: one for rendering of arbitrary manifold 3D meshes, and one for terrain visualization

    Interactive Out-of-core Visualization of Very Large Landscapes on Commodity Graphics Platforms

    Get PDF
    We recently introduced an efficient technique for out-of-core rendering and management of large textured landscapes. The technique, called Batched Dynamic Adaptive Meshes (BDAM), is based on a paired tree structure: a tiled quadtree for texture data and a pair of bintrees of small triangular patches for the geometry. These small patches are TINs that are constructed and optimized off-line with high quality simplification and tristripping algorithms. Hierarchical view frustum culling and view-dependendent texture/geometry refinement is performed at each frame with a stateless traversal algorithm that renders a continuous adaptive terrain surface by assembling out of core data. Thanks to the batched CPU/GPU communication model, the proposed technique is not processor intensive and fully harnesses the power of current graphics hardware. This paper summarizes the method and discusses the results obtained in a virtual flythrough over a textured digital landscape derived from aerial imaging.21-2

    Planet-Sized Batched Dynamic Adaptive Meshes (P-BDAM)

    Get PDF
    This paper describes an efficient technique for out-of-core management and interactive rendering of planet sized textured terrain surfaces. The technique, called planet-sized batched dynamic adaptive meshes (P-BDAM), extends the BDAM approach by using as basic primitive a general triangulation of points on a displaced triangle. The proposed framework introduces several advances with respect to the state of the art: thanks to a batched host-to-graphics communication model, we outperform current adaptive tessellation solutions in terms of rendering speed; we guarantee overall geometric continuity, exploiting programmable graphics hardware to cope with the accuracy issues introduced by single precision floating points; we exploit a compressed out of core representation and speculative prefetching for hiding disk latency during rendering of out-of-core data; we efficiently construct high quality simplified representations with a novel distributed out of core simplification algorithm working on a standard PC network.147-15

    Scalable Realtime Rendering and Interaction with Digital Surface Models of Landscapes and Cities

    Get PDF
    Interactive, realistic rendering of landscapes and cities differs substantially from classical terrain rendering. Due to the sheer size and detail of the data which need to be processed, realtime rendering (i.e. more than 25 images per second) is only feasible with level of detail (LOD) models. Even the design and implementation of efficient, automatic LOD generation is ambitious for such out-of-core datasets considering the large number of scales that are covered in a single view and the necessity to maintain screen-space accuracy for realistic representation. Moreover, users want to interact with the model based on semantic information which needs to be linked to the LOD model. In this thesis I present LOD schemes for the efficient rendering of 2.5d digital surface models (DSMs) and 3d point-clouds, a method for the automatic derivation of city models from raw DSMs, and an approach allowing semantic interaction with complex LOD models. The hierarchical LOD model for digital surface models is based on a quadtree of precomputed, simplified triangle mesh approximations. The rendering of the proposed model is proved to allow real-time rendering of very large and complex models with pixel-accurate details. Moreover, the necessary preprocessing is scalable and fast. For 3d point clouds, I introduce an LOD scheme based on an octree of hybrid plane-polygon representations. For each LOD, the algorithm detects planar regions in an adequately subsampled point cloud and models them as textured rectangles. The rendering of the resulting hybrid model is an order of magnitude faster than comparable point-based LOD schemes. To automatically derive a city model from a DSM, I propose a constrained mesh simplification. Apart from the geometric distance between simplified and original model, it evaluates constraints based on detected planar structures and their mutual topological relations. The resulting models are much less complex than the original DSM but still represent the characteristic building structures faithfully. Finally, I present a method to combine semantic information with complex geometric models. My approach links the semantic entities to the geometric entities on-the-fly via coarser proxy geometries which carry the semantic information. Thus, semantic information can be layered on top of complex LOD models without an explicit attribution step. All findings are supported by experimental results which demonstrate the practical applicability and efficiency of the methods

    A hybrid representation for modeling, interactive editing, and real-time visualization of terrains with volumetric features

    Get PDF
    Cataloged from PDF version of article.Terrain rendering is a crucial part of many real-time applications. The easiest way to process and visualize terrain data in real time is to constrain the terrain model in several ways. This decreases the amount of data to be processed and the amount of processing power needed, but at the cost of expressivity and the ability to create complex terrains. The most popular terrain representation is a regular 2D grid, where the vertices are displaced in a third dimension by a displacement map, called a heightmap. This is the simplest way to represent terrain, and although it allows fast processing, it cannot model terrains with volumetric features. Volumetric approaches sample the 3D space by subdividing it into a 3D grid and represent the terrain as occupied voxels. They can represent volumetric features but they require computationally intensive algorithms for rendering, and their memory requirements are high. We propose a novel representation that combines the voxel and heightmap approaches, and is expressive enough to allow creating terrains with caves, overhangs, cliffs, and arches, and efficient enough to allow terrain editing, deformations, and rendering in real time

    Diamond-based models for scientific visualization

    Get PDF
    Hierarchical spatial decompositions are a basic modeling tool in a variety of application domains including scientific visualization, finite element analysis and shape modeling and analysis. A popular class of such approaches is based on the regular simplex bisection operator, which bisects simplices (e.g. line segments, triangles, tetrahedra) along the midpoint of a predetermined edge. Regular simplex bisection produces adaptive simplicial meshes of high geometric quality, while simplifying the extraction of crack-free, or conforming, approximations to the original dataset. Efficient multiresolution representations for such models have been achieved in 2D and 3D by clustering sets of simplices sharing the same bisection edge into structures called diamonds. In this thesis, we introduce several diamond-based approaches for scientific visualization. We first formalize the notion of diamonds in arbitrary dimensions in terms of two related simplicial decompositions of hypercubes. This enables us to enumerate the vertices, simplices, parents and children of a diamond. In particular, we identify the number of simplices involved in conforming updates to be factorial in the dimension and group these into a linear number of subclusters of simplices that are generated simultaneously. The latter form the basis for a compact pointerless representation for conforming meshes generated by regular simplex bisection and for efficiently navigating the topological connectivity of these meshes. Secondly, we introduce the supercube as a high-level primitive on such nested meshes based on the atomic units within the underlying triangulation grid. We propose the use of supercubes to associate information with coherent subsets of the full hierarchy and demonstrate the effectiveness of such a representation for modeling multiresolution terrain and volumetric datasets. Next, we introduce Isodiamond Hierarchies, a general framework for spatial access structures on a hierarchy of diamonds that exploits the implicit hierarchical and geometric relationships of the diamond model. We use an isodiamond hierarchy to encode irregular updates to a multiresolution isosurface or interval volume in terms of regular updates to diamonds. Finally, we consider nested hypercubic meshes, such as quadtrees, octrees and their higher dimensional analogues, through the lens of diamond hierarchies. This allows us to determine the relationships involved in generating balanced hypercubic meshes and to propose a compact pointerless representation of such meshes. We also provide a local diamond-based triangulation algorithm to generate high-quality conforming simplicial meshes
    • …
    corecore