3,685 research outputs found

    Haplotype reconstruction error as a classical misclassification problem

    Get PDF
    Statistically reconstructing haplotypes from single nucleotide polymorphism (SNP) genotypes, can lead to falsely classified haplotypes. This can be an issue when interpreting haplotype association results or when selecting subjects with certain haplotypes for subsequent functional studies. It was our aim to quantify haplotype reconstruction error and to provide tools for it. By numerous simulation scenarios, we systematically investigated several error measures, including discrepancy, error rate, and R(2), and introduced the sensitivity and specificity to this context. We exemplified several measures in the KORA study, a large population-based study from Southern Germany. We find that the specificity is slightly reduced only for common haplotypes, while the sensitivity was decreased for some, but not all rare haplotypes. The overall error rate was generally increasing with increasing number of loci, increasing minor allele frequency of SNPs, decreasing correlation between the alleles and increasing ambiguity. We conclude that, with the analytical approach presented here, haplotype-specific error measures can be computed to gain insight into the haplotype uncertainty. This method provides the information, if a specific risk haplotype can be expected to be reconstructed with rather no or high misclassification and thus on the magnitude of expected bias in association estimates. We also illustrate that sensitivity and specificity separate two dimensions of the haplotype reconstruction error, which completely describe the misclassification matrix and thus provide the prerequisite for methods accounting for misclassification

    Circumpolar Diversity and Geographic Differentiation of mtDNA in the Critically Endangered Antarctic Blue Whale (Balaenoptera musculus intermedia)

    Get PDF
    To the best of our knowledge, one or more authors of this paper were federal employees when contributing to this work.\ud This is the publisher’s final pdf. The published article is copyrighted by the Public Library of Science and can be found at: http://www.plosone.org/home.action.The Antarctic blue whale (Balaenoptera musculus intermedia) was hunted to near extinction between 1904 and 1972, declining from an estimated initial abundance of more than 250,000 to fewer than 400. Here, we describe mtDNA control region diversity and geographic differentiation in the surviving population of the Antarctic blue whale, using 218 biopsy samples collected under the auspices of the International Whaling Commission (IWC) during research cruises from 1990-2009. Microsatellite genotypes and mtDNA sequences identified 166 individuals among the 218 samples and documented movement of a small number of individuals, including a female that traveled at least 6,650 km or 131 degrees longitude over four years. mtDNA sequences from the 166 individuals were aligned with published sequences from 17 additional individuals, resolving 52 unique haplotypes from a consensus length of 410 bp. From this minimum census, a rarefaction analysis predicted that only 72 haplotypes (95% CL, 64, 86) have survived in the contemporary population of Antarctic blue whales. However, haplotype diversity was relatively high (0.968 +/- 0.004), perhaps as a result of the longevity of blue whales and the relatively recent timing of the bottleneck. Despite the potential for circumpolar dispersal, we found significant differentiation in mtDNA diversity (F-ST = 0.032, p<0.005) and microsatellite alleles (F-ST = 0.005, p<0.05) among the six Antarctic Areas historically used by the IWC for management of blue whales
    corecore