6,425 research outputs found

    A statistical network analysis of the HIV/AIDS epidemics in Cuba

    Get PDF
    The Cuban contact-tracing detection system set up in 1986 allowed the reconstruction and analysis of the sexual network underlying the epidemic (5,389 vertices and 4,073 edges, giant component of 2,386 nodes and 3,168 edges), shedding light onto the spread of HIV and the role of contact-tracing. Clustering based on modularity optimization provides a better visualization and understanding of the network, in combination with the study of covariates. The graph has a globally low but heterogeneous density, with clusters of high intraconnectivity but low interconnectivity. Though descriptive, our results pave the way for incorporating structure when studying stochastic SIR epidemics spreading on social networks

    Exploring dependence between categorical variables: benefits and limitations of using variable selection within Bayesian clustering in relation to log-linear modelling with interaction terms

    Get PDF
    This manuscript is concerned with relating two approaches that can be used to explore complex dependence structures between categorical variables, namely Bayesian partitioning of the covariate space incorporating a variable selection procedure that highlights the covariates that drive the clustering, and log-linear modelling with interaction terms. We derive theoretical results on this relation and discuss if they can be employed to assist log-linear model determination, demonstrating advantages and limitations with simulated and real data sets. The main advantage concerns sparse contingency tables. Inferences from clustering can potentially reduce the number of covariates considered and, subsequently, the number of competing log-linear models, making the exploration of the model space feasible. Variable selection within clustering can inform on marginal independence in general, thus allowing for a more efficient exploration of the log-linear model space. However, we show that the clustering structure is not informative on the existence of interactions in a consistent manner. This work is of interest to those who utilize log-linear models, as well as practitioners such as epidemiologists that use clustering models to reduce the dimensionality in the data and to reveal interesting patterns on how covariates combine.Comment: Preprin

    Multiscale Markov Decision Problems: Compression, Solution, and Transfer Learning

    Full text link
    Many problems in sequential decision making and stochastic control often have natural multiscale structure: sub-tasks are assembled together to accomplish complex goals. Systematically inferring and leveraging hierarchical structure, particularly beyond a single level of abstraction, has remained a longstanding challenge. We describe a fast multiscale procedure for repeatedly compressing, or homogenizing, Markov decision processes (MDPs), wherein a hierarchy of sub-problems at different scales is automatically determined. Coarsened MDPs are themselves independent, deterministic MDPs, and may be solved using existing algorithms. The multiscale representation delivered by this procedure decouples sub-tasks from each other and can lead to substantial improvements in convergence rates both locally within sub-problems and globally across sub-problems, yielding significant computational savings. A second fundamental aspect of this work is that these multiscale decompositions yield new transfer opportunities across different problems, where solutions of sub-tasks at different levels of the hierarchy may be amenable to transfer to new problems. Localized transfer of policies and potential operators at arbitrary scales is emphasized. Finally, we demonstrate compression and transfer in a collection of illustrative domains, including examples involving discrete and continuous statespaces.Comment: 86 pages, 15 figure
    • …
    corecore