40,350 research outputs found

    Structural learning for large scale image classification

    Get PDF
    To leverage large-scale collaboratively-tagged (loosely-tagged) images for training a large number of classifiers to support large-scale image classification, we need to develop new frameworks to deal with the following issues: (1) spam tags, i.e., tags are not relevant to the semantic of the images; (2) loose object tags, i.e., multiple object tags are loosely given at the image level without their locations in the images; (3) missing object tags, i.e. some object tags are missed due to incomplete tagging; (4) inter-related object classes, i.e., some object classes are visually correlated and their classifiers need to be trained jointly instead of independently; (5) large scale object classes, which requires to limit the computational time complexity for classifier training algorithms as well as the storage spaces for intermediate results. To deal with these issues, we propose a structural learning framework which consists of the following key components: (1) cluster-based junk image filtering to address the issue of spam tags; (2) automatic tag-instance alignment to address the issue of loose object tags; (3) automatic missing object tag prediction; (4) object correlation network for inter-class visual correlation characterization to address the issue of missing tags; (5) large-scale structural learning with object correlation network for enhancing the discrimination power of object classifiers. To obtain enough numbers of labeled training images, our proposed framework leverages the abundant web images and their social tags. To make those web images usable, tag cleansing has to be done to neutralize the noise from user tagging preferences, in particularly junk tags, loose tags and missing tags. Then a discriminative learning algorithm is developed to train a large number of inter-related classifiers for achieving large-scale image classification, e.g., learning a large number of classifiers for categorizing large-scale images into a large number of inter-related object classes and image concepts. A visual concept network is first constructed for organizing enumorus object classes and image concepts according to their inter-concept visual correlations. The visual concept network is further used to: (a) identify inter-related learning tasks for classifier training; (b) determine groups of visually-similar object classes and image concepts; and (c) estimate the learning complexity for classifier training. A large-scale discriminative learning algorithm is developed for supporting multi-class classifier training and achieving accurate inter-group discrimination and effective intra-group separation. Our discriminative learning algorithm can significantly enhance the discrimination power of the classifiers and dramatically reduce the computational cost for large-scale classifier training

    Collaborative Layer-wise Discriminative Learning in Deep Neural Networks

    Full text link
    Intermediate features at different layers of a deep neural network are known to be discriminative for visual patterns of different complexities. However, most existing works ignore such cross-layer heterogeneities when classifying samples of different complexities. For example, if a training sample has already been correctly classified at a specific layer with high confidence, we argue that it is unnecessary to enforce rest layers to classify this sample correctly and a better strategy is to encourage those layers to focus on other samples. In this paper, we propose a layer-wise discriminative learning method to enhance the discriminative capability of a deep network by allowing its layers to work collaboratively for classification. Towards this target, we introduce multiple classifiers on top of multiple layers. Each classifier not only tries to correctly classify the features from its input layer, but also coordinates with other classifiers to jointly maximize the final classification performance. Guided by the other companion classifiers, each classifier learns to concentrate on certain training examples and boosts the overall performance. Allowing for end-to-end training, our method can be conveniently embedded into state-of-the-art deep networks. Experiments with multiple popular deep networks, including Network in Network, GoogLeNet and VGGNet, on scale-various object classification benchmarks, including CIFAR100, MNIST and ImageNet, and scene classification benchmarks, including MIT67, SUN397 and Places205, demonstrate the effectiveness of our method. In addition, we also analyze the relationship between the proposed method and classical conditional random fields models.Comment: To appear in ECCV 2016. Maybe subject to minor changes before camera-ready versio

    Multi-task CNN Model for Attribute Prediction

    Full text link
    This paper proposes a joint multi-task learning algorithm to better predict attributes in images using deep convolutional neural networks (CNN). We consider learning binary semantic attributes through a multi-task CNN model, where each CNN will predict one binary attribute. The multi-task learning allows CNN models to simultaneously share visual knowledge among different attribute categories. Each CNN will generate attribute-specific feature representations, and then we apply multi-task learning on the features to predict their attributes. In our multi-task framework, we propose a method to decompose the overall model's parameters into a latent task matrix and combination matrix. Furthermore, under-sampled classifiers can leverage shared statistics from other classifiers to improve their performance. Natural grouping of attributes is applied such that attributes in the same group are encouraged to share more knowledge. Meanwhile, attributes in different groups will generally compete with each other, and consequently share less knowledge. We show the effectiveness of our method on two popular attribute datasets.Comment: 11 pages, 3 figures, ieee transaction pape
    • …
    corecore