14,798 research outputs found

    Large Non-Planar Graphs and an Application to Crossing-Critical Graphs

    Full text link
    We prove that, for every positive integer k, there is an integer N such that every 4-connected non-planar graph with at least N vertices has a minor isomorphic to K_{4,k}, the graph obtained from a cycle of length 2k+1 by adding an edge joining every pair of vertices at distance exactly k, or the graph obtained from a cycle of length k by adding two vertices adjacent to each other and to every vertex on the cycle. We also prove a version of this for subdivisions rather than minors, and relax the connectivity to allow 3-cuts with one side planar and of bounded size. We deduce that for every integer k there are only finitely many 3-connected 2-crossing-critical graphs with no subdivision isomorphic to the graph obtained from a cycle of length 2k by joining all pairs of diagonally opposite vertices.Comment: To appear in Journal of Combinatorial Theory B. 20 pages. No figures. Te

    Bond percolation on isoradial graphs: criticality and universality

    Full text link
    In an investigation of percolation on isoradial graphs, we prove the criticality of canonical bond percolation on isoradial embeddings of planar graphs, thus extending celebrated earlier results for homogeneous and inhomogeneous square, triangular, and other lattices. This is achieved via the star-triangle transformation, by transporting the box-crossing property across the family of isoradial graphs. As a consequence, we obtain the universality of these models at the critical point, in the sense that the one-arm and 2j-alternating-arm critical exponents (and therefore also the connectivity and volume exponents) are constant across the family of such percolation processes. The isoradial graphs in question are those that satisfy certain weak conditions on their embedding and on their track system. This class of graphs includes, for example, isoradial embeddings of periodic graphs, and graphs derived from rhombic Penrose tilings.Comment: In v2: extended title, and small changes in the tex

    Planar Ising model at criticality: state-of-the-art and perspectives

    Full text link
    In this essay, we briefly discuss recent developments, started a decade ago in the seminal work of Smirnov and continued by a number of authors, centered around the conformal invariance of the critical planar Ising model on Z2\mathbb{Z}^2 and, more generally, of the critical Z-invariant Ising model on isoradial graphs (rhombic lattices). We also introduce a new class of embeddings of general weighted planar graphs (s-embeddings), which might, in particular, pave the way to true universality results for the planar Ising model.Comment: 19 pages (+ references), prepared for the Proceedings of ICM2018. Second version: two references added, a few misprints fixe

    Rapid algorithm for identifying backbones in the two-dimensional percolation model

    Full text link
    We present a rapid algorithm for identifying the current-carrying backbone in the percolation model. It applies to general two-dimensional graphs with open boundary conditions. Complemented by the modified Hoshen-Kopelman cluster labeling algorithm, our algorithm identifies dangling parts using their local properties. For planar graphs, it finds the backbone almost four times as fast as Tarjan's depth-first-search algorithm, and uses the memory of the same size as the modified Hoshen-Kopelman algorithm. Comparison with other algorithms for backbone identification is addressed.Comment: 5 pages with 5 eps figures. RevTeX 3.1. Clarify the origin of the hull-generating algorith
    corecore