10,362 research outputs found

    Constructing dense graphs with sublinear Hadwiger number

    Full text link
    Mader asked to explicitly construct dense graphs for which the size of the largest clique minor is sublinear in the number of vertices. Such graphs exist as a random graph almost surely has this property. This question and variants were popularized by Thomason over several articles. We answer these questions by showing how to explicitly construct such graphs using blow-ups of small graphs with this property. This leads to the study of a fractional variant of the clique minor number, which may be of independent interest.Comment: 10 page

    Algebraic Methods of Classifying Directed Graphical Models

    Full text link
    Directed acyclic graphical models (DAGs) are often used to describe common structural properties in a family of probability distributions. This paper addresses the question of classifying DAGs up to an isomorphism. By considering Gaussian densities, the question reduces to verifying equality of certain algebraic varieties. A question of computing equations for these varieties has been previously raised in the literature. Here it is shown that the most natural method adds spurious components with singular principal minors, proving a conjecture of Sullivant. This characterization is used to establish an algebraic criterion for isomorphism, and to provide a randomized algorithm for checking that criterion. Results are applied to produce a list of the isomorphism classes of tree models on 4,5, and 6 nodes. Finally, some evidence is provided to show that projectivized DAG varieties contain useful information in the sense that their relative embedding is closely related to efficient inference

    Deciding first-order properties of nowhere dense graphs

    Full text link
    Nowhere dense graph classes, introduced by Nesetril and Ossona de Mendez, form a large variety of classes of "sparse graphs" including the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs and graph classes of bounded expansion. We show that deciding properties of graphs definable in first-order logic is fixed-parameter tractable on nowhere dense graph classes. At least for graph classes closed under taking subgraphs, this result is optimal: it was known before that for all classes C of graphs closed under taking subgraphs, if deciding first-order properties of graphs in C is fixed-parameter tractable, then C must be nowhere dense (under a reasonable complexity theoretic assumption). As a by-product, we give an algorithmic construction of sparse neighbourhood covers for nowhere dense graphs. This extends and improves previous constructions of neighbourhood covers for graph classes with excluded minors. At the same time, our construction is considerably simpler than those. Our proofs are based on a new game-theoretic characterisation of nowhere dense graphs that allows for a recursive version of locality-based algorithms on these classes. On the logical side, we prove a "rank-preserving" version of Gaifman's locality theorem.Comment: 30 page

    Combinatorial symbolic powers

    Get PDF
    Symbolic powers are studied in the combinatorial context of monomial ideals. When the ideals are generated by quadratic squarefree monomials, the generators of the symbolic powers are obstructions to vertex covering in the associated graph and its blowups. As a result, perfect graphs play an important role in the theory, dual to the role played by perfect graphs in the theory of secants of monomial ideals. We use Gr\"obner degenerations as a tool to reduce questions about symbolic powers of arbitrary ideals to the monomial case. Among the applications are a new, unified approach to the Gr\"obner bases of symbolic powers of determinantal and Pfaffian ideals.Comment: 29 pages, 3 figures, Positive characteristic results incorporated into main body of pape
    • …
    corecore