2,414 research outputs found

    Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes

    Get PDF
    One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks

    On the onset of synchronization of Kuramoto oscillators in scale-free networks

    Get PDF
    Despite the great attention devoted to the study of phase oscillators on complex networks in the last two decades, it remains unclear whether scale-free networks exhibit a nonzero critical coupling strength for the onset of synchronization in the thermodynamic limit. Here, we systematically compare predictions from the heterogeneous degree mean-field (HMF) and the quenched mean-field (QMF) approaches to extensive numerical simulations on large networks. We provide compelling evidence that the critical coupling vanishes as the number of oscillators increases for scale-free networks characterized by a power-law degree distribution with an exponent 2<γ32 < \gamma \leq 3, in line with what has been observed for other dynamical processes in such networks. For γ>3\gamma > 3, we show that the critical coupling remains finite, in agreement with HMF calculations and highlight phenomenological differences between critical properties of phase oscillators and epidemic models on scale-free networks. Finally, we also discuss at length a key choice when studying synchronization phenomena in complex networks, namely, how to normalize the coupling between oscillators

    Activity driven modeling of time varying networks

    Get PDF
    Network modeling plays a critical role in identifying statistical regularities and structural principles common to many systems. The large majority of recent modeling approaches are connectivity driven. The structural patterns of the network are at the basis of the mechanisms ruling the network formation. Connectivity driven models necessarily provide a time-aggregated representation that may fail to describe the instantaneous and fluctuating dynamics of many networks. We address this challenge by defining the activity potential, a time invariant function characterizing the agents' interactions and constructing an activity driven model capable of encoding the instantaneous time description of the network dynamics. The model provides an explanation of structural features such as the presence of hubs, which simply originate from the heterogeneous activity of agents. Within this framework, highly dynamical networks can be described analytically, allowing a quantitative discussion of the biases induced by the time-aggregated representations in the analysis of dynamical processes.Comment: 10 pages, 4 figure

    Multiple phase transitions of the susceptible-infected-susceptible epidemic model on complex networks

    Full text link
    The epidemic threshold of the susceptible-infected-susceptible (SIS) dynamics on random networks having a power law degree distribution with exponent γ>3\gamma>3 has been investigated using different mean-field approaches, which predict different outcomes. We performed extensive simulations in the quasistationary state for a comparison with these mean-field theories. We observed concomitant multiple transitions in individual networks presenting large gaps in the degree distribution and the obtained multiple epidemic thresholds are well described by different mean-field theories. We observed that the transitions involving thresholds which vanishes at the thermodynamic limit involve localized states, in which a vanishing fraction of the network effectively contribute to epidemic activity, whereas an endemic state, with a finite density of infected vertices, occurs at a finite threshold. The multiple transitions are related to the activations of distinct sub-domains of the network, which are not directly connected.Comment: This is a final version that will appear soon in Phys. Rev.

    Epidemic spreading on preferred degree adaptive networks

    Get PDF
    We study the standard SIS model of epidemic spreading on networks where individuals have a fluctuating number of connections around a preferred degree κ\kappa . Using very simple rules for forming such preferred degree networks, we find some unusual statistical properties not found in familiar Erd\H{o}s-R\'{e}nyi or scale free networks. By letting κ\kappa depend on the fraction of infected individuals, we model the behavioral changes in response to how the extent of the epidemic is perceived. In our models, the behavioral adaptations can be either `blind' or `selective' -- depending on whether a node adapts by cutting or adding links to randomly chosen partners or selectively, based on the state of the partner. For a frozen preferred network, we find that the infection threshold follows the heterogeneous mean field result λc/μ=/\lambda_{c}/\mu =/ and the phase diagram matches the predictions of the annealed adjacency matrix (AAM) approach. With `blind' adaptations, although the epidemic threshold remains unchanged, the infection level is substantially affected, depending on the details of the adaptation. The `selective' adaptive SIS models are most interesting. Both the threshold and the level of infection changes, controlled not only by how the adaptations are implemented but also how often the nodes cut/add links (compared to the time scales of the epidemic spreading). A simple mean field theory is presented for the selective adaptations which capture the qualitative and some of the quantitative features of the infection phase diagram.Comment: 21 pages, 7 figure

    Emergence of Blind Areas in Information Spreading

    Full text link
    Recently, contagion-based (disease, information, etc.) spreading on social networks has been extensively studied. In this paper, other than traditional full interaction, we propose a partial interaction based spreading model, considering that the informed individuals would transmit information to only a certain fraction of their neighbors due to the transmission ability in real-world social networks. Simulation results on three representative networks (BA, ER, WS) indicate that the spreading efficiency is highly correlated with the network heterogeneity. In addition, a special phenomenon, namely \emph{Information Blind Areas} where the network is separated by several information-unreachable clusters, will emerge from the spreading process. Furthermore, we also find that the size distribution of such information blind areas obeys power-law-like distribution, which has very similar exponent with that of site percolation. Detailed analyses show that the critical value is decreasing along with the network heterogeneity for the spreading process, which is complete the contrary to that of random selection. Moreover, the critical value in the latter process is also larger that of the former for the same network. Those findings might shed some lights in in-depth understanding the effect of network properties on information spreading
    corecore