669 research outputs found

    Lattice Boltzmann very large eddy simulations of a turbulent flow over covered and uncovered cavities

    Get PDF
    Microphone measurements in a closed test section wind tunnel are affected by turbulent boundary layer (TBL) pressure fluctuations. These fluctuations are mitigated by placing the microphones at the bottom of cavities, usually covered with a thin, acoustically transparent material. Prior experiments showed that the cavity geometry affects the propagation of TBL pressure fluctuations toward the bottom. However, the relationship between the cavity geometry and the flowfield within the cavity is not well understood. Therefore, a very large-eddy simulation was performed using the lattice Boltzmann method. A cylindrical, a countersunk and a conical cavity are simulated with and without a fine wire-cloth cover, which is modeled as a porous medium governed by Darcy’s law. Adding a countersink to an uncovered cylindrical cavity is found to mitigate the transport of turbulent structures across the bottom by shifting the recirculation pattern away from the cavity bottom. Covering the cavities nearly eliminates this source of hydrodynamic pressure fluctuations. The eddies within the boundary layer, which convect over the cover, generate a primarily acoustic pressure field inside the cavities and thus suggesting that the pressure fluctuations within covered cavities can be modeled acoustically. As the cavity diameter increases compared to the eddies’ integral length scale, the amount of energy in the cut-off modes increases with respect to the cut-on modes. Since cut-off modes decay as they propagate into the cavity, more attenuation is seen. The results are in agreement with experimental evidenc

    Effects of yawed inflow on the aerodynamic and aeroacoustic performance of ducted wind turbines

    Get PDF
    Ducted Wind Turbines (DWTs) can be used for energy harvesting in urban areas where non-uniform inflows might be the cause of aerodynamic and acoustic performance degradation. For this reason, an aerodynamic and aero-acoustic analysis of DWTs in yawed inflow condition is performed for two duct geometries: a baseline commercial DWT model, DonQi®, and one with a duct having a higher cross-section camber with respect to the baseline, named DonQi D5. The latter has been obtained from a previous optimization study. A numerical investigation using Lattice-Boltzmann Very-Large-Eddy Simulations is presented. Data confirm that the aerodynamic performance improvement, i.e. increase of the power coefficient, is proportional to the increase of the duct thrust force coefficient. It is found that, placing the DWT at a yaw angle of 7.5 , the aerodynamic performances of the DonQi D5 DWT model are less affected by the yaw angle. On the other hand, this configuration shows an increase of broadband noise with respect to the baseline DonQi® one, both in non-yawed and yawed inflow conditions. This is associated to turbulent boundary layer trailing edge noise due to the turbulent flow structures developing along the surface of the duct

    Multi-scale modeling of particle-laden flows

    Get PDF
    Particle-laden flow occur in a wide range of engineering applications such as combustors, gasifiers, fluidized beds and pollution control systems. Particle-flow interactions are complex, especially in turbulent and confined flows. A proper understanding of these interactions is critical in designing devices with better performance characteristics. In this work, particle-laden flows in channels are numerically investigated with the lattice-Boltzmann method (LBM). A three-dimensional parallelized lattice-Boltzmann method code is developed to carry out these studies. The code resolves the particle surface and the boundary layer surrounding it to gain fundamental insights into particle-flow interactions. The lattice-Boltzmann method is assessed for its accuracy in solving several standard single-phase and multi-phase, laminar and turbulent flows. Direct numerical simulations (DNS) of particle-laden channel flows are then performed. When the particle diameter is smaller than the Kolmogorov length scale, direct numerical simulations (DNS) with the point-particle approximation show that the Stokes number, St, mass loading of particles, i.e. ratio of mass of dispersed to carried phase, and particle diameter, are important parameters that determine the distribution of the particles across the channel cross-section and the impact of the particles on the flow field. When the St is infinitesimally small, the particles are uniformly distributed across the cross-section of the channel. As St is increased, the particle concentration near the wall increases. At even higher St, the particle concentration near the wall decreases, but it increases at the center of the channel. These changes in concentration are attributed to turbophoresis which causes preferential movement of the particles. The impact of the turbophoretic force is affected by St and particle diameter. The parameters that influence the mean flow field of the carrier phase is primarily the mass loading. To further improve the understanding of the physics of the flow, particle-resolved direct numerical simulations (PR-DNS) are carried out. Particle motion in a laminar channel flow is initially studied. The trajectory of a single particle is examined. It is shown that the mean equilibrium position of the particle in the channel depends on the St. Particles with low St reach an equilibrium position that lies between the wall and the center of the channel (Segre-Silberberg effect) while those with high St begin to oscillate about the center of the channel as they are transported by the fluid. The particle location and motion are determined by the interplay of three forces acting on the particle in the wall normal direction: the Saffman lift, Magnus lift and wall repulsion. Saffman lift and Magnus lift act to move the particle towards the wall while wall-repulsion opposes this motion. Direct numerical simulations of turbulent flow past stationary particles in a channel are then carried out. These simulations provide information about particle-flow interactions when the particle is near the wall and at the center. Multiple particles fixed in a cross-sectional plane are also considered. The position of the particles in the channel, the particle size, the Reynolds number and the number of particles are varied. The details of the flow field are analyzed to provide insight into the factors that control the distance of influence of the fixed particle on the flow field. With a single particle case, the effect of the particle is felt for about 20 diameters downstream. When multiple particles are present, interaction between the vortices shed by the particles lengthens the distance to about 40 diameters downstream. The results suggest that in a particle-laden flow, if particles are separated by an average distance greater than 40 diameters, particle-fluid-particle interactions can be neglected. At shorter distances, these interactions become important. Next particle-resolved direct numerical simulations (PR-DNS) in a turbulent channel flow are carried out to study the particle motion when the particle diameter is larger than the Kolmogorov length scale. It is shown that in a turbulent channel flow, the dominant forces are the Saffman lift and the turbophoresis. When the particle is larger than the Kolmogorov length scale, turbophoresis can act in a local sense whereby the more intense exchange of momentum of eddies on the side of the particle with higher turbulent kinetic energy relative to the opposite side move the particle toward the lower turbulent kinetic energy region or in a global sense whereby even when the particles do not directly feel the effect of eddies, particles tend to diffuse down gradients of turbulent kinetic energy. The simulations show that particles with relatively lower St move preferentially toward the wall while those with higher St exhibit a relatively uniform concentration. This is consistent with the conclusion from the point-particle simulations. As particle size is increased, the St at which uniform distribution is reached increases. The likely reason is that the effect of local turbophoresis and Saffman lift increases for larger particles and these forces tend to concentrate particles near the wall. Higher St, i.e. higher inertia, is needed to overcome these forces

    Numerical investigation of particle-fluid interaction system based on discrete element method

    Get PDF
    This thesis focuses on the numerical investigation of the particle-fluid systems based on the Discrete Element Method (DEM). The whole thesis consists of three parts, in each part we have coupled the DEM with different schemes/solvers on the fluid phase. In the first part, we have coupled DEM with Direct Numerical Simulation (DNS) to study the particle-laden turbulent flow. The effect of collisions on the particle behavior in fully developed turbulent flow in a straight square duct was numerically investigated. Three sizes of particles were considered with diameters equal to 50 µm, 100 µm and 500 µm. Firstly, the particle transportation by turbulent flow was studied in the absence of the gravitational effect. Then, the particle deposition was studied under the effect of the wall-normal gravity force in which the influence of collisions on the particle resuspension rate and the final stage of particle distribution on the duct floor were discussed, respectively. In the second part, we have coupled DEM with Lattice Boltzmann Method (LBM) to study the particle sedimentation in Newtonian laminar flow. A novel combined LBM-IBM-DEM scheme was presented with its application to model the sedimentation of two dimensional circular particles in incompressible Newtonian flows. Case studies of single sphere settling in a cavity, and two particles settling in a channel were carried out, the velocity characteristics of the particle during settling and near the bottom were examined. At last, a numerical example of sedimentation involving 504 particles was finally presented to demonstrate the capability of the combined scheme. Furthermore, a Particulate Immersed Boundary Method (PIBM) for simulating the fluid-particle multiphase flow was presented and assessed in both two and three-dimensional applications. Compared with the conventional IBM, dozens of times speedup in two-dimensional simulation and hundreds of times in three-dimensional simulation can be expected under the same particle and mesh number. Numerical simulations of particle sedimentation in the Newtonian flows were conducted based on a combined LBM - PIBM - DEM showing that the PIBM could capture the feature of the particulate flows in fluid and was indeed a promising scheme for the solution of the fluid-particle interaction problems. In the last part, we have coupled DEM with averaged Navier-Stokes equations (NS) to study the particle transportation and wear process on the pipe wall. A case of pneumatic conveying was utilized to demonstrate the capability of the coupling model. The concrete pumping process was then simulated, where the hydraulic pressure and velocity distribution of the fluid phase were obtained. The frequency of the particles impacting on the bended pipe was monitored, a new time average collision intensity model based on impact force was proposed to investigate the wear process of the elbow. The location of maximum erosive wear damage in elbow was predicted. Furthermore, the influences of slurry velocity, bend orientation and angle of elbow on the puncture point location were discussed.Esta tesis se centra en la investigación numérica de sistemas partícula-líquido basado en la técnica Discrete Element Method (DEM). La tesis consta de tres partes, en cada una de las cuales se ha acoplado el método DEM con diferentes esquemas/solucionadores en la fase fluida. En la primera parte, hemos acoplado los métodos DEM con Direct Numerical Simulation (DNS) para estudiar casos de "particle-laden turbulent flow". Se investigó numéricamente el efecto de las colisiones en el comportamiento de las partículas en el flujo turbulento completamente desarrollado en un conducto cuadrado recto. Tres tamaños de partículas se consideraron con diámetros de 50, 100 y 500 micrometros. En primer lugar, el transporte de partículas por el flujo turbulento se estudió en la ausencia del efecto gravitacional. Entonces, la deposición de partículas se estudió bajo el efecto de la fuerza de gravedad normal a la pared, en el que se discutieron la influencia de la tasa de colisiones en re-suspensión de las partículas y la fase final de la distribución de partículas en el suelo del conducto, respectivamente. En la segunda parte, se ha acoplado los métodos DEM con Lattice Boltzmann Method (LBM) para estudiar la sedimentación de partículas en flujo laminar newtoniano. Un nuevo metodo combinado LBM-IBM-DEM se presentó y ha sido aplicado para modelar la sedimentación de dos partículas circulares bi-dimensionales en flujos Newtonianos incompresibles. Se estudiaron casos de sedimentación en una cavidad de una sola esfera, y sedimentación de dos partículas en un canal, las características de la velocidad de la partícula durante la sedimentación y cerca de la base fueron también examinados. En el último caso, un ejemplo numérico de sedimentación de 504 partículas fue finalmente presentado para demostrar la capacidad del método combinado. Además, se ha presentado un método "Particulate Immersed Boundary Method" (PIBM) para la simulación de flujos multifásicos partícula-fluido y ha sido evaluado en dos y tres dimensiones. En comparación con el método IBM convencional, se puede esperar con el mismo número de partículas y de malla un SpeedUp docenas de veces superior en la simulación bidimensional y cientos de veces en la simulación en tres dimensiones. Se llevaron a cabo simulaciones numéricas de la sedimentación de partículas en los flujos newtonianos basados en una combinación LBM - PIBM - DEM, mostrando que el PIBM podría capturar las características de los flujos de partículas en el líquido y fue en efecto un esquema prometedor para la solución de problemas de interacción fluido-partícula. En la última parte, se ha acoplado el método DEM con las ecuaciones promediadas de Navier-Stokes (NS) para estudiar el transporte de partículas y el proceso de desgaste en la pared de una tubería. Se utilizó un caso de transporte neumático para demostrar la capacidad del modelo acoplado. Entonces se simuló el proceso de bombeo de hormigón, de donde se obtuvo la presión hidráulica y la distribución de la velocidad de la fase fluida. Se monitoreó la frecuencia de impacto de las partículas en la tubería doblada, se propuso un nuevo modelo de intensidad de colisión promediado en tiempo para investigar el proceso de desgaste del codo basado en la fuerza de impacto. Se predijo la ubicación del daño máximo desgaste por erosión en el codo. Además, se examinaron las influencias de la velocidad de pulpa, la orientación y el ángulo de curvatura del codo en la ubicación del punto de punción.Postprint (published version

    Investigation of Particles Statistics in large Eddy Simulated Turbulent Channel Flow using Generalized lattice Boltzmann Method

    Get PDF
    The interaction of spherical solid particles with turbulent eddies in a 3-D turbulent channel flow with friction Reynolds number was studied. A generalized lattice Boltzmann equation (GLBE) was used for computation of instantaneous turbulent flow field for which large eddy simulation (LES) was employed. The sub-grid-scale (SGS) turbulence effects were simulated through a shear-improved Smagorinsky model (SISM), which can predict turbulent near wall region without any wall function. Statistical properties of particles behavior such as root mean square (RMS) velocities were studied as a function of dimensionless particle relaxation time ( ) by using a Lagrangian approach. Combination of SISM in GLBE with particle tracking analysis in turbulent channel flow is novelty of the present work. Both GLBE and SISM solve the flow field equations locally. This is an advantage of this method and makes it easy implementing. Comparison of the present results with previous available data indicated that SISM in GLBE is a reliable method for simulation of turbulent flows which is a key point to predict particles behavior correctly

    Double Multiple-Relaxation-Time model of Lattice-Boltzmann Magnetohydrodynamics at Low Magnetic Reynolds Numbers

    Full text link
    We develop an improved lattice-Boltzmann numerical scheme to solve magnetohydrodynamic (MHD) equations in the regime of low magnetic Reynolds numbers, grounded on a manifestly Galilean covariant modeling of the Navier-Stokes equations. The simulation of the magnetic induction equation within the lattice-Boltzmann approach to MHD has been usually devised along the lines of the simplest phenomenological description, the single relaxation time (SRT) model. In order to deal with well-known stability difficulties of the SRT framework, we introduce, alternatively, a multi-relaxation-time technique for the solution of the magnetic induction equation, combined with a novel boundary condition method to cope with the subtleties of magnetic Boltzmann-like distributions on curved boundaries. As an application, we investigate open issues related to the description of transient flow regimes in MHD pipe flows, subject to non-uniform magnetic fields

    Evaluation of a near-wall-modeled large eddy lattice boltzmann method for the analysis of complex flows relevant to IC engines

    Get PDF
    In this paper, we compare the capabilities of two open source near-wall-modeled large eddy simulation (NWM-LES) approaches regarding prediction accuracy, computational costs and ease of use to predict complex turbulent flows relevant to internal combustion (IC) engines. The applied open source tools are the commonly used OpenFOAM, based on the finite volume method (FVM), and OpenLB, an implementation of the lattice Boltzmann method (LBM). The near-wall region is modeled by the Musker equation coupled to a van Driest damped Smagorinsky-Lilly sub-grid scale model to decrease the required mesh resolution. The results of both frameworks are compared to a stationary engine flow bench experiment by means of particle image velocimetry (PIV). The validation covers a detailed error analysis using time-averaged and root mean square (RMS) velocity fields. Grid studies are performed to examine the performance of the two solvers. In addition, the differences in the processes of grid generation are highlighted. The performance results show that the OpenLB approach is on average 32 times faster than the OpenFOAM implementation for the tested configurations. This indicates the potential of LBM for the simulation of IC engine-relevant complex turbulent flows using NWM-LES with computationally economic costs
    • …
    corecore