76,693 research outputs found

    Deducing effective light transport parameters in optically thin systems

    Get PDF
    We present an extensive Monte Carlo study on light transport in optically thin slabs, addressing both axial and transverse propagation. We completely characterize the so-called ballistic-to-diffusive transition, notably in terms of the spatial variance of the transmitted/reflected profile. We test the validity of the prediction cast by diffusion theory, that the spatial variance should grow independently of absorption and, to a first approximation, of the sample thickness and refractive index contrast. Based on a large set of simulated data, we build a freely available look-up table routine allowing reliable and precise determination of the microscopic transport parameters starting from robust observables which are independent of absolute intensity measurements. We also present the Monte Carlo software package that was developed for the purpose of this study

    Evaluation of advanced optimisation methods for estimating Mixed Logit models

    No full text
    The performances of different simulation-based estimation techniques for mixed logit modeling are evaluated. A quasi-Monte Carlo method (modified Latin hypercube sampling) is compared with a Monte Carlo algorithm with dynamic accuracy. The classic Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm line-search approach and trust region methods, which have proved to be extremely powerful in nonlinear programming, are also compared. Numerical tests are performed on two real data sets: stated preference data for parking type collected in the United Kingdom, and revealed preference data for mode choice collected as part of a German travel diary survey. Several criteria are used to evaluate the approximation quality of the log likelihood function and the accuracy of the results and the associated estimation runtime. Results suggest that the trust region approach outperforms the BFGS approach and that Monte Carlo methods remain competitive with quasi-Monte Carlo methods in high-dimensional problems, especially when an adaptive optimization algorithm is used

    Rare event simulation for multiscale diffusions in random environments

    Full text link
    We consider systems of stochastic differential equations with multiple scales and small noise and assume that the coefficients of the equations are ergodic and stationary random fields. Our goal is to construct provably-efficient importance sampling Monte Carlo methods that allow efficient computation of rare event probabilities or expectations of functionals that can be associated with rare events. Standard Monte Carlo algorithms perform poorly in the small noise limit and hence fast simulations algorithms become relevant. The presence of multiple scales complicates the design and the analysis of efficient importance sampling schemes. An additional complication is the randomness of the environment. We construct explicit changes of measures that are proven to be logarithmic asymptotically efficient with probability one with respect to the random environment (i.e., in the quenched sense). Numerical simulations support the theoretical results.Comment: Final version, paper to appear in SIAM Journal Multiscale Modelling and Simulatio

    Entropic effects in large-scale Monte Carlo simulations

    Get PDF
    The efficiency of Monte Carlo samplers is dictated not only by energetic effects, such as large barriers, but also by entropic effects that are due to the sheer volume that is sampled. The latter effects appear in the form of an entropic mismatch or divergence between the direct and reverse trial moves. We provide lower and upper bounds for the average acceptance probability in terms of the Renyi divergence of order 1/2. We show that the asymptotic finitude of the entropic divergence is the necessary and sufficient condition for non-vanishing acceptance probabilities in the limit of large dimensions. Furthermore, we demonstrate that the upper bound is reasonably tight by showing that the exponent is asymptotically exact for systems made up of a large number of independent and identically distributed subsystems. For the last statement, we provide an alternative proof that relies on the reformulation of the acceptance probability as a large deviation problem. The reformulation also leads to a class of low-variance estimators for strongly asymmetric distributions. We show that the entropy divergence causes a decay in the average displacements with the number of dimensions n that are simultaneously updated. For systems that have a well-defined thermodynamic limit, the decay is demonstrated to be n^{-1/2} for random-walk Monte Carlo and n^{-1/6} for Smart Monte Carlo (SMC). Numerical simulations of the LJ_38 cluster show that SMC is virtually as efficient as the Markov chain implementation of the Gibbs sampler, which is normally utilized for Lennard-Jones clusters. An application of the entropic inequalities to the parallel tempering method demonstrates that the number of replicas increases as the square root of the heat capacity of the system.Comment: minor corrections; the best compromise for the value of the epsilon parameter in Eq. A9 is now shown to be log(2); 13 pages, 4 figures, to appear in PR

    Test of variational approximation for phi4phi^4 quantum chain by Monte Carlo simulation

    Full text link
    We report results of a Monte Carlo simulation of the ϕ4\phi^4 quantum chain. In order to enhance the efficiency of the simulation we combine multigrid simulation techniques with a refined discretization scheme. The resulting accuracy of our data allows for a significant test of an analytical approximation based on a variational ansatz. While the variational approximation is well reproduced for a large range of parameters we find significant deviations for low temperatures and large couplings.Comment: 12 pp. Latex + 3 figures as uuencoded compressed tar file, accepted for publication in Phys. Lett.

    Dynamic importance sampling for uniformly recurrent markov chains

    Full text link
    Importance sampling is a variance reduction technique for efficient estimation of rare-event probabilities by Monte Carlo. In standard importance sampling schemes, the system is simulated using an a priori fixed change of measure suggested by a large deviation lower bound analysis. Recent work, however, has suggested that such schemes do not work well in many situations. In this paper we consider dynamic importance sampling in the setting of uniformly recurrent Markov chains. By ``dynamic'' we mean that in the course of a single simulation, the change of measure can depend on the outcome of the simulation up till that time. Based on a control-theoretic approach to large deviations, the existence of asymptotically optimal dynamic schemes is demonstrated in great generality. The implementation of the dynamic schemes is carried out with the help of a limiting Bellman equation. Numerical examples are presented to contrast the dynamic and standard schemes.Comment: Published at http://dx.doi.org/10.1214/105051604000001016 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore