7,452 research outputs found

    A review of metal foam and metal matrix composites for heat exchangers and heat Sinks

    Get PDF
    Recent advances in manufacturing methods open the possibility for broader use of metal foams and metal matrix composites (MMCs) for heat exchangers, and these materials can have tailored material properties. Metal foams in particular combine a number of interesting properties from a heat exchanger's point of view. In this paper, the material properties of metal foams and MMCs are surveyed, and the current state of the art is reviewed for heat exchanger applications. Four different applications are considered: liquid-liquid, liquid-gas, and gas-gas heat exchangers and heat sinks. Manufacturing and implementation issues are identified and discussed, and it is concluded that these materials hold promise both for heat exchangers and heat sinks, but that some key issues still need to be solved before broad-scale application is possible

    Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites

    Get PDF
    Drug resistant focal epilepsy can be treated by resecting the epileptic focus requiring a precise focus localization using stereoelectroencephalography (SEEG) probes. As commercial SEEG probes offer only a limited spatial resolution, probes of higher channel count and design freedom enabling the incorporation of macro and microelectrodes would help increasing spatial resolution and thus open new perspectives for investigating mechanisms underlying focal epilepsy and its treatment. This work describes a new fabrication process for SEEG probes with materials and dimensions similar to clinical probes enabling recording single neuron activity at high spatial resolution. Polyimide is used as a biocompatible flexible substrate into which platinum electrodes and leads are... The resulting probe features match those of clinically approved devices. Tests in saline solution confirmed the probe stability and functionality. Probes were implanted into the brain of one monkey (Macaca mulatta), trained to perform different motor tasks. Suitable configurations including up to 128 electrode sites allow the recording of task-related neuronal signals. Probes with 32 and 64 electrode sites were implanted in the posterior parietal cortex. Local field potentials and multi-unit activity were recorded as early as one hour after implantation. Stable single-unit activity was achieved for up to 26 days after implantation of a 64-channel probe. All recorded signals showed modulation during task execution. With the novel probes it is possible to record stable biologically relevant data over a time span exceeding the usual time needed for epileptic focus localization in human patients. This is the first time that single units are recorded along cylindrical polyimide probes chronically implanted 22 mm deep into the brain of a monkey, which suggests the potential usefulness of this probe for human applications

    Mechanical durability of hydrophobic surfaces fabricated by injection moulding of laser-induced textures

    Get PDF
    YesThe paper reports an investigation on the mechanical durability of textured thermoplastic surfaces together with their respective wetting properties. A range of laser-induced topographies with different aspect ratios from micro to nanoscale were fabricated on tool steel inserts using an ultrashort pulsed near infrared laser. Then, through micro-injection moulding the topographies were replicated onto polypropylene surfaces and their durability was studied systematically. In particular, the evolution of topographies on textured thermoplastic surfaces together with their wetting properties were investigated after undergoing a controlled mechanical abrasion, i.e. reciprocating dry and wet cleaning cycles. The obtained empirical data was used both to study the effects of cleaning cycles and also to identify cleaning procedures with a minimal impact on textured thermoplastic surfaces and their respective wetting properties. In addition, the use of 3D areal parameters that are standardised and could be obtained readily with any state-of-the-art surface characterisation system are discussed for monitoring the surfaces' functional response.European Commission H2020 ITN programme “European ESRs Network on Short Pulsed Laser Micro/Nanostructuring of Surfaces for Improved Functional Applications” (Laser4Fun) under the Marie Skłodowska-Curie grant agreement No. 675063 (www.laser4fun.eu) and the UKIERI DST programme “Surface functionalisation for food, packaging, and healthcare applications”. In addition, the work was supported by three other H2020 programmes, i.e. the projects on “Modular laser based additive manufacturing platform for large scale industrial applications” (MAESTRO), “High-Impact Injection Moulding Platform for mass-production of 3D and/or large micro-structured surfaces with Antimicrobial, Self-cleaning, Anti-scratch, Anti-squeak and Aesthetic functionalities” (HIMALAIA) and “Process Fingerprint for Zero-defect Net-shape Micromanufacturing” (MICROMAN)

    The ultra-low-frequency shear modes of 2-4 layer graphenes observed in their scroll structures at edges

    Full text link
    The in-plane shear modes between neighbor-layers of 2-4 layer graphenes (LGs) and the corresponding graphene scrolls rolled up by 2-4LGs were investigated by Raman scattering. In contrast to that just one shear mode was observed in 3-4LGs, all the shear modes of 3-4LGs were observed in 3-4 layer scrolls (LSs), whose frequencies agree well with the theoretical predication by both a force-constant model and a linear chain model. In comparison to the broad width (about 12cm−1^{-1}) for the G band in graphite, all the shear modes exhibit an intrinsic line width of about 1.0 cm−1^{-1}. The local electronic structures dependent on the local staking configurations enhance the intensity of the shear modes in corresponding 2-4LSs zones, which makes it possible to observe all the shear modes. It provides a direct evidence that how the band structures of FLGs can be sensitive to local staking configurations. This result can be extended to n layer graphene (n > 4) for the understanding of the basic phonon properties of multi-layer graphenes. This observation of all-scale shear modes can be foreseen in other 2D materials with similar scroll structures.Comment: 14 pages, 5 figure
    • …
    corecore