216 research outputs found

    Large-volume metrology instrument selection and measurability analysis

    Get PDF
    A wide range of metrology processes are involved in the manufacture of large products. In addition to the traditional tool-setting and product-verification operations, increasingly flexible metrology-enabled automation is also being used. Faced with many possible measurement problems and a very large number of metrology instruments employing diverse technologies, the selection of the appropriate instrument for a given task can be highly complex. Also, as metrology has become a key manufacturing process, it should be considered in the early stages of design, and there is currently very little research to support this. This paper provides an overview of the important selection criteria for typical measurement processes and presents some novel selection strategies. Metrics that can be used to assess measurability are also discussed. A prototype instrument selection and measurability analysis application is also presented, with discussion of how this can be used as the basis for development of a more sophisticated measurement planning tool. © 2010 Authors

    Representing the Process of Machine Tool Calibration in First-order Logic

    Get PDF
    Machine tool calibration requires a wide range of measurement techniques that can be carried out in many different sequences. Planning a machine tool calibration is typically performed by a subject expert with a great understanding of International standards and industrial best-practice guides. However, it is often the case that the planned sequence of measurements is not the optimal. Therefore, in an attempt to improve the process, intelligent computing methods can be designed for plan suggestion. As a starting point, this paper presents a way of converting expert knowledge into first-order logic that can be expressed in the PROLOG language. It then shows how queries can be executed against the logic to construct a knowledge-base of all the different measurements that can be performed during machine tool calibration

    Multi-objective optimisation of machine tool error mapping using automated planning

    Get PDF
    Error mapping of machine tools is a multi-measurement task that is planned based on expert knowledge. There are no intelligent tools aiding the production of optimal measurement plans. In previous work, a method of intelligently constructing measurement plans demonstrated that it is feasible to optimise the plans either to reduce machine tool downtime or the estimated uncertainty of measurement due to the plan schedule. However, production scheduling and a continuously changing environment can impose conflicting constraints on downtime and the uncertainty of measurement. In this paper, the use of the produced measurement model to minimise machine tool downtime, the uncertainty of measurement and the arithmetic mean of both is investigated and discussed through the use of twelve different error mapping instances. The multi-objective search plans on average have a 3% reduction in the time metric when compared to the downtime of the uncertainty optimised plan and a 23% improvement in estimated uncertainty of measurement metric when compared to the uncertainty of the temporally optimised plan. Further experiments on a High Performance Computing (HPC) architecture demonstrated that there is on average a 3% improvement in optimality when compared with the experiments performed on the PC architecture. This demonstrates that even though a 4% improvement is beneficial, in most applications a standard PC architecture will result in valid error mapping plan

    Analysing uncertainty contributions in dimensional measurements of large-size objects by ultrasound sensors

    Get PDF
    According to the ever-increasing interest in metrological systems for dimensional measurements of large-size objects in a wide range of industrial sectors, several solutions based on different technologies, working principles, architectures and functionalities have been recently designed. Among these, a distributed flexible system based on a network of low-cost ultrasound (US) sensors - the Mobile Spatial coordinate Measuring System (MScMS) - has been developed. This article presents a possible approach to assess the system uncertainty referring to the measured point coordinates in the 3D space, focusing on the sources of measurement uncertainty and the related propagation la

    New demands on inspection planning and quality testing for micro- and nanostructured components

    Get PDF
    The development and control of more and more complex and extensive technical systems yields to measurement-technology requirements in an increasing degree. These requirements can not be met with the exclusive operation mode of a single-sensor measuring instrument because in most instances multifarious and multistructured measuring quantities are existing on one device under test. The aim of this paper is to discuss new problems of inspection planning arising from the improvement in measurement technology. Essential demands, ideas and conceptual approaches to multistructured quality inspections will be presented

    Is our understanding of measurement evolving?

    Get PDF
    Traditionally understood as a quantitative empirical process, in the last decades measurement has been reconsidered in its aims, scope, and structure, so that the basic questions are again important: what kind of knowledge do we obtain from a measurement? what is the source of the acknowledged special efficacy of measurement? A preliminary analysis is proposed here from an evolutionary perspective
    • …
    corecore