1,051 research outputs found

    Hardware accelerated redundancy elimination in network system

    Get PDF
    With the tremendous growth in the amount of information stored on remote locations and cloud systems, many service providers are seeking ways to reduce the amount of redundant information sent across networks by using data de-duplication techniques. Data de-duplication can reduce network traffic without the loss of information, and consequently increase available network bandwidth by reducing redundant traffic. However, due to the heavy computation required for detecting and reducing redundant data transmission, de-duplication itself can become a bottleneck in high capacity links. We completed two parts of work in this research study, Hardware Accelerated Redundancy Elimination in Network Systems (HARENS) and Distributed Redundancy Elimination System Simulation (DRESS). HARENS can significantly improve the performance of redundancy elimination algorithm in a network system by leveraging General Purpose Graphic Processing Unit (GPGPU) techniques as well as other big data optimizations such as the use of a hierarchical multi-threaded pipeline, single machine Map-Reduce, and memory efficiency techniques. Our results indicate that throughput can be increased by a factor of 9 times compared to a naive implementation of the data de-duplication algorithm, providing a net transmission increase of up to 3.0 Gigabits per second (Gbps). DRESS provides further acceleration to the redundancy elimination in network system by deploying HARENS as the server\u27s side redundancy elimination module, and four cooperative distributed byte caches on the clients\u27 side. A client\u27s side distributed byte cache broadcast its cached chunks by sending hash values to other byte caches, so that they can keep a record of all the chunks in the cooperative distributed cache system. When duplications are detected, a client\u27s side byte cache can fetch a chunk directly from either its own cache or peer byte caches rather than server\u27s side redundancy elimination module. Our results indicate that bandwidth savings of the redundancy elimination system with cooperative distributed byte cache can be increased by 12% compared to the one without distributed byte cache, when transferring about 48 Gigabits of data

    An evaluation between Bloom Filter join and PERF join in Distributed Query Processing

    Get PDF
    Nowadays, with the explosion of information and the telecommunication era\u27s coming, more and more huge applications encourage decentralization of data while accessing data from different sites [HFB00]. The process of retrieving data from different sites called Distributed Query Processing. The objective of distributed query optimization is to find the most cost-effective of executing query across the network [OV99]. Semijoin [BC81] [BG+81] is known as an effective operator to eliminate the tuples of a relation which are not contributive to a query. 2-way semijoin [KR87] is an extended version of semijoin which not only performs forward reduction like traditional semijoin does, but also provides backward reduction always in cost-effective way. Bloom Filter[B70] and PERF [LR95] are 2 filter based techniques which use a bit vector to represent of the original join attributes projection during the data transmission. Compare with generating a bit array with hash function in bloom filter, Perf join is based on the tuples scan order to avoid losing information caused by hash collision. In the thesis, we will apply both bloom filter and pert on 2-way semijoin algorithms to reduce transmission cost of distributed queries. Performance of propose algorithms will compare against each others and IFS (Initial Feasible Solution) through amount of experiments. \u27Keywords:\u27 Distributed Query Processing, Semijoin, Bloom Filter, Perf Join

    Deep Supervised Hashing using Symmetric Relative Entropy

    Get PDF
    By virtue of their simplicity and efficiency, hashing algorithms have achieved significant success on large-scale approximate nearest neighbor search. Recently, many deep neural network based hashing methods have been proposed to improve the search accuracy by simultaneously learning both the feature representation and the binary hash functions. Most deep hashing methods depend on supervised semantic label information for preserving the distance or similarity between local structures, which unfortunately ignores the global distribution of the learned hash codes. We propose a novel deep supervised hashing method that aims to minimize the information loss generated during the embedding process. Specifically, the information loss is measured by the Jensen-Shannon divergence to ensure that compact hash codes have a similar distribution with those from the original images. Experimental results show that our method outperforms current state-of-the-art approaches on two benchmark datasets

    Collaborative autonomy in heterogeneous multi-robot systems

    Get PDF
    As autonomous mobile robots become increasingly connected and widely deployed in different domains, managing multiple robots and their interaction is key to the future of ubiquitous autonomous systems. Indeed, robots are not individual entities anymore. Instead, many robots today are deployed as part of larger fleets or in teams. The benefits of multirobot collaboration, specially in heterogeneous groups, are multiple. Significantly higher degrees of situational awareness and understanding of their environment can be achieved when robots with different operational capabilities are deployed together. Examples of this include the Perseverance rover and the Ingenuity helicopter that NASA has deployed in Mars, or the highly heterogeneous robot teams that explored caves and other complex environments during the last DARPA Sub-T competition. This thesis delves into the wide topic of collaborative autonomy in multi-robot systems, encompassing some of the key elements required for achieving robust collaboration: solving collaborative decision-making problems; securing their operation, management and interaction; providing means for autonomous coordination in space and accurate global or relative state estimation; and achieving collaborative situational awareness through distributed perception and cooperative planning. The thesis covers novel formation control algorithms, and new ways to achieve accurate absolute or relative localization within multi-robot systems. It also explores the potential of distributed ledger technologies as an underlying framework to achieve collaborative decision-making in distributed robotic systems. Throughout the thesis, I introduce novel approaches to utilizing cryptographic elements and blockchain technology for securing the operation of autonomous robots, showing that sensor data and mission instructions can be validated in an end-to-end manner. I then shift the focus to localization and coordination, studying ultra-wideband (UWB) radios and their potential. I show how UWB-based ranging and localization can enable aerial robots to operate in GNSS-denied environments, with a study of the constraints and limitations. I also study the potential of UWB-based relative localization between aerial and ground robots for more accurate positioning in areas where GNSS signals degrade. In terms of coordination, I introduce two new algorithms for formation control that require zero to minimal communication, if enough degree of awareness of neighbor robots is available. These algorithms are validated in simulation and real-world experiments. The thesis concludes with the integration of a new approach to cooperative path planning algorithms and UWB-based relative localization for dense scene reconstruction using lidar and vision sensors in ground and aerial robots
    corecore