3,893 research outputs found

    Effects of Topography on Seismic-Wave Propagation: An Example from Northern Taiwan

    Get PDF
    Topography influences ground motion and, in general, increases the amplitude of shaking at mountain tops and ridges, whereas valleys have reduced ground motions, as is observed from data recorded during and after real earthquakes and from numerical simulations. However, recent publications have focused mainly on the implications for ground motion in the mountainous regions themselves, whereas the impact on surrounding low-lying areas has received less attention. Here, we develop a new spectral-element mesh implementation to accommodate realistic topography as well as the complex shape of the Taipei sedimentary basin, which is located close to the Central Mountain Range in northern Taiwan. Spectral-element numerical simulations indicate that high-resolution topography can change peak ground velocity (PGV) values in mountainous areas by ±50% compared to a half-space response. We further demonstrate that large-scale topography can affect the propagation of seismic waves in nearby areas. For example, if a shallow earthquake occurs in the I-Lan region of Taiwan, the Central Mountain Range will significantly scatter the surface waves and will in turn reduce the amplitude of ground motion in the Taipei basin. However, as the hypocenter moves deeper, topography scatters body waves, which subsequently propagate as surface waves into the basin. These waves continue to interact with the basin and the surrounding mountains, finally resulting in complex amplification patterns in Taipei City, with an overall PGV increase of more than 50%. For realistic subduction zone earthquake scenarios off the northeast coast of Taiwan, the effects of topography on ground motion in both the mountains and the Taipei basin vary and depend on the rupture process. The complex interactions that can occur between mountains and surrounding areas, especially sedimentary basins, illustrate the fact that topography should be taken into account when assessing seismic hazard

    Slabs in the lower mantle and their modulation of plume formation

    Get PDF
    Numerical mantle convection models indicate that subducting slabs can reach the core-mantle boundary (CMB) for a wide range of assumed material properties and plate tectonic histories. An increase in lower mantle viscosity, a phase transition at 660 km depth, depth-dependent thermal expansivity, and depth-dependent thermal diffusivity do not preclude model slabs from reaching the CMB. We find that ancient slabs could be associated with lateral temperature anomalies ~500°C cooler than ambient mantle. Plausible increases of thermal conductivity with depth will not cause slabs to diffuse away. Regional spherical models with actual plate evolutionary models show that slabs are unlikely to be continuous from the upper mantle to the CMB, even for radially simple mantle structures. The observation from tomography showing only a few continuous slab-like features from the surface to the CMB may be a result of complex plate kinematics, not mantle layering. There are important consequences of deeply penetrating slabs. Our models show that plumes preferentially develop on the edge of slabs. In areas on the CMB free of slabs, plume formation and eruption are expected to be frequent while the basal thermal boundary layer would be thin. However, in areas beneath slabs, the basal thermal boundary layer would be thicker and plume formation infrequent. Beneath slabs, a substantial amount of hot mantle can be trapped over long periods of time, leading to “mega-plume” formation. We predict that patches of low seismic velocity may be found beneath large-scale high seismic velocity structures at the core-mantle boundary. We find that the location, buoyancy, and geochemistry of mega-plumes will differ from those plumes forming at the edge of slabs. Various geophysical and geochemical implications of this finding are discussed

    Radiative Hydrodynamic Simulations of HD209458b: Temporal Variability

    Full text link
    We present a new approach for simulating the atmospheric dynamics of the close-in giant planet HD209458b that allows for the decoupling of radiative and thermal energies, direct stellar heating of the interior, and the solution of the full 3D Navier Stokes equations. Simulations reveal two distinct temperature inversions (increasing temperature with decreasing pressure) at the sub-stellar point due to the combined effects of opacity and dynamical flow structure and exhibit instabilities leading to changing velocities and temperatures on the nightside for a range of viscosities. Imposed on the quasi-static background, temperature variations of up to 15% are seen near the terminators and the location of the coldest spot is seen to vary by more than 20 degrees, occasionally appearing west of the anti-solar point. Our new approach introduces four major improvements to our previous methods including simultaneously solving both the thermal energy and radiative equations in both the optical and infrared, incorporating updated opacities, including a more accurate treatment of stellar energy deposition that incorporates the opacity relevant for higher energy stellar photons, and the addition of explicit turbulent viscosity.Comment: Accepted for publication in Ap

    Numerical simulations of an ocean/continent convergent system: influence of subduction geometry and mantle wedge hydration on crustal recycling

    Get PDF
    The effects of the hydration mechanism on continental crust recycling are analyzed through a 2D finite element thermo-mechanical model. Oceanic slab dehydration and consequent mantle wedge hydration are implemented using a dynamic method. Hydration is accomplished by lawsonite and serpentine breakdown; topography is treated as a free surface. Subduction rates of 1, 3, 5, 7.5 and 10 cm/y, slab angles of 30o, 45o and 60o and a mantle rheology represented by dry dunite and dry olivine flow laws, have been taken into account during successive numerical experiments. Model predictions pointed out that a direct relationship exists between mantle rheology and the amount of recycled crustal material: the larger the viscosity contrast between hydrated and dry mantle, the larger the percentage of recycled material into the mantle wedge. Slab dip variation has a moderate impact on the recycling. Metamorphic evolution of recycled material is influenced by subduction style. TPmax, generally representative of eclogite facies conditions, is sensitive to changes in slab dip. A direct relationship between subduction rate and exhumation rate results for different slab dips that does not depend on the used mantle flow law. Thermal regimes predicted by different numerical models are compared to PT paths followed by continental crustal slices involved in ancient and recent subduction zones, making ablative subduction a suitable pre-collisional mechanism for burial and exhumation of continental crust.Comment: 10 figures, 3 table

    Dynamic interaction between tectonic plates, subducting slabs, and the mantle

    Get PDF
    Mantle convection models have been formulated to investigate the relation between plate kinematics and mantle dynamics. The cylindrical geometry models incorporate mobile, faulted plate margins, a phase change at 670 km depth, non-Newtonian rheology, and tectonic plates. Models with a variety of parameters indicate that a relatively stationary trench is more likely to be associated with a subducted slab that penetrates into the lower mantle with a steep dip angle. However, a subducted slab that is deflected above the 670-km phase change with a shallow dip is more likely to be associated with a margin that has undergone rapid retrograde trench migration. This relation between slab morphology and plate kinematics is consistent with seismic tomography and plate reconstruction of western Pacific subduction zones. The efficiency of slab penetration through the 670-km phase change is controlled by both the buoyancy of the subducting plate and the mobility of the overriding plate. While older subducting plates have a greater propensity for slab penetration, trench mobility reduces the propensity for slab penetration. Smaller overriding plates have a greater mobility. When subducted slabs approach the bottom thermal boundary layer, hot fluid is pushed aside, and plumes form on the periphery of slab accumulations. There are sharp temperature contrasts between the subducted slab and the thermal boundary layer at the core mantle boundary (CMB). Old subducted slabs and a thermal boundary layer lead to large-scale lateral structure near the CMB

    Waveform modeling of the slab beneath Japan

    Get PDF
    The tomographic P wave model for the Japan subduction zone derived by Zhao et al. (1994) has two very striking features: a slab about 90 km thick with P wave velocities 3–6% higher than the surrounding mantle and a mantle wedge with −6% low-velocity anomalies. We study three-component seismograms from more than 600 Hi-net stations produced by two earthquakes which occurred in the downgoing Pacific Plate at depths greater than 400 km. We simulate body wave propagation in the three-dimensional (3-D) P wave model using 2-D finite difference (FDM) and 3-D spectral element (SEM) methods. As measured by cross correlation between synthetics and data, the P wave model typically explains about half of the traveltime anomaly and some of the waveform complexity but fails to predict the extended SH wave train. In this study we take advantage of the densely distributed Hi-net stations and use 2-D FDM modeling to simulate the P-SV and SH waveforms. Our 2-D model suggests that a thin, elongated low-velocity zone exists atop the slab, extending down to a depth of 300 km with an S wave velocity reduction of 14% if a thickness of 20 km is assumed. Further, 3-D SEM simulations confirm that this model explains a strong secondary arrival which cannot easily be imaged with standard tomographic techniques. The low-velocity layer could explain the relatively weak coupling associated with most subduction zones at shallow depths (<50 km), generally involving abundant volcanic activity and silent earthquakes, and it may also help to further our understanding of the water-related phase transition of ultramafic rocks, and the nature of seismicity at intermediate depths (~70–300 km)
    corecore