15,371 research outputs found

    STREETS: an agent-based pedestrian model.

    Get PDF
    8-11 Septembe

    Balancing operating revenues and occupied refurbishment costs 1: problems of defining project success factors and selecting site planning methods

    Get PDF
    In planning the refurbishment of railway stations the spatial needs of the contractor and of the ongoing business stakeholders have to be balanced. A particular concern is the disruptive effect of construction works upon pedestrian movement. RaCMIT (Refurbishment and Customer Movement Integration Tool) was a research project aimed at addressing this problem. The objective of the research was to develop a decision protocol facilitating optimisation of overall project value to the client's business. This paper (the first of two) presents a framework for considering public disruption in occupied refurbishment using two case studies in large railway stations as examples. It briefly describes new tools which (combined with existing techniques) assist decision making in the management of disruption. It links strategic with sitebased decision making and suggests how public disruption may be treated as a variable to be jointly optimised along with traditional criteria such as time, cost and quality. Research observations as well as current literature suggest that for overall decision-making, opportunities may be lost (under current practice) for minimising joint project cost/revenue disruption, and, for spatio-temporal site decision-making, effective and efficient tools now exist to model both sides of the construction site boundary

    Drawing the line: balancing the spatial requirements of customer and contractor in occupied refurbishment

    Get PDF
    In planning the refurbishment of railway stations the spatial needs of the contractor and ofthe ongoing business stakeholders have to be balanced. A particular concern is thedisruptive effect of construction works upon pedestrian movement.RaCMIT (Refurbishment and Customer Movement Integration Tool) is a research projectaimed at addressing this problem through combining the knowledge of the client projectmanager, the construction planner and the pedestrian modelling expert.The objective of the research is to develop a decision protocol (based on problemsencountered in two case studies) facilitating optimisation of overall project value to theclient?s business.Research observations as well as current literature suggest that:? for overall decision-making, opportunities may be lost (under current practice) forminimising joint project cost/revenue disruption and? for spatial decision-making, temporary station configuration during construction(and not just overall pedestrian capacity) is a significant variable for both businessand safety outcomes. In planning the refurbishment of railway stations the spatial needs of the contractor and ofthe ongoing business stakeholders have to be balanced. A particular concern is thedisruptive effect of construction works upon pedestrian movement.RaCMIT (Refurbishment and Customer Movement Integration Tool) is a research projectaimed at addressing this problem through combining the knowledge of the client projectmanager, the construction planner and the pedestrian modelling expert.The objective of the research is to develop a decision protocol (based on problemsencountered in two case studies) facilitating optimisation of overall project value to theclient?s business.Research observations as well as current literature suggest that:? for overall decision-making, opportunities may be lost (under current practice) forminimising joint project cost/revenue disruption and? for spatial decision-making, temporary station configuration during construction(and not just overall pedestrian capacity) is a significant variable for both businessand safety outcomes

    "So go downtown": simulating pedestrian movement in town centres

    Get PDF
    Pedestrian movement models have been developed since the 1970s. A review of the literature shows that such models have been developed to explain and predict macro, meso, and micro movement patterns. However, recent developments in modelling techniques, and especially advances in agent-based simulation, open up the possibility of developing integrative and complex models which use existing models as 'building blocks'. In this paper we describe such integrative, modular approach to simulating pedestrian movement behaviour. The STREETS model, developed by using Swarm and GIS, is an agent-based model that focuses on the simulation of the behavioural aspects of pedestrian movement. The modular structure of the simulation is described in detail. This is followed by a discussion of the lessons learned from the development of STREETS, especially the advantages of adopting a modular approach and other aspects of using the agent-based paradigm for modelling

    Pedestrian Flow Simulation Validation and Verification Techniques

    Get PDF
    For the verification and validation of microscopic simulation models of pedestrian flow, we have performed experiments for different kind of facilities and sites where most conflicts and congestion happens e.g. corridors, narrow passages, and crosswalks. The validity of the model should compare the experimental conditions and simulation results with video recording carried out in the same condition like in real life e.g. pedestrian flux and density distributions. The strategy in this technique is to achieve a certain amount of accuracy required in the simulation model. This method is good at detecting the critical points in the pedestrians walking areas. For the calibration of suitable models we use the results obtained from analyzing the video recordings in Hajj 2009 and these results can be used to check the design sections of pedestrian facilities and exits. As practical examples, we present the simulation of pilgrim streams on the Jamarat bridge. The objectives of this study are twofold: first, to show through verification and validation that simulation tools can be used to reproduce realistic scenarios, and second, gather data for accurate predictions for designers and decision makers.Comment: 19 pages, 10 figure

    "Last-Mile" preparation for a potential disaster

    Get PDF
    Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of small-scale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socio-economic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity
    corecore