60 research outputs found

    Monocular Visual Odometry for Fixed-Wing Small Unmanned Aircraft Systems

    Get PDF
    The popularity of small unmanned aircraft systems (SUAS) has exploded in recent years and seen increasing use in both commercial and military sectors. A key interest area for the military is to develop autonomous capabilities for these systems, of which navigation is a fundamental problem. Current navigation solutions suffer from a heavy reliance on a Global Positioning System (GPS). This dependency presents a significant limitation for military applications since many operations are conducted in environments where GPS signals are degraded or actively denied. Therefore, alternative navigation solutions without GPS must be developed and visual methods are one of the most promising approaches. A current visual navigation limitation is that much of the research has focused on developing and applying these algorithms on ground-based vehicles, small hand-held devices or multi-rotor SUAS. However, the Air Force has a need for fixed-wing SUAS to conduct extended operations. This research evaluates current state-of-the-art, open-source monocular visual odometry (VO) algorithms applied on fixed-wing SUAS flying at high altitudes under fast translation and rotation speeds. The algorithms tested are Semi-Direct VO (SVO), Direct Sparse Odometry (DSO), and ORB-SLAM2 (with loop closures disabled). Each algorithm is evaluated on a fixed-wing SUAS in simulation and real-world flight tests over Camp Atterbury, Indiana. Through these tests, ORB-SLAM2 is found to be the most robust and flexible algorithm under a variety of test conditions. However, all algorithms experience great difficulty maintaining localization in the collected real-world datasets, showing the limitations of using visual methods as the sole solution. Further study and development is required to fuse VO products with additional measurements to form a complete autonomous navigation solution

    Virtual Testbed for Monocular Visual Navigation of Small Unmanned Aircraft Systems

    Full text link
    Monocular visual navigation methods have seen significant advances in the last decade, recently producing several real-time solutions for autonomously navigating small unmanned aircraft systems without relying on GPS. This is critical for military operations which may involve environments where GPS signals are degraded or denied. However, testing and comparing visual navigation algorithms remains a challenge since visual data is expensive to gather. Conducting flight tests in a virtual environment is an attractive solution prior to committing to outdoor testing. This work presents a virtual testbed for conducting simulated flight tests over real-world terrain and analyzing the real-time performance of visual navigation algorithms at 31 Hz. This tool was created to ultimately find a visual odometry algorithm appropriate for further GPS-denied navigation research on fixed-wing aircraft, even though all of the algorithms were designed for other modalities. This testbed was used to evaluate three current state-of-the-art, open-source monocular visual odometry algorithms on a fixed-wing platform: Direct Sparse Odometry, Semi-Direct Visual Odometry, and ORB-SLAM2 (with loop closures disabled)

    Small Fixed-wing Aerial Positioning Using Inter-vehicle Ranging Combined with Visual Odometry

    Get PDF
    There has been increasing interest in developing the ability for small unmanned aerial systems (SUAS) to be able to operate in environments where GPS is not available. This research considers the case of a larger aircraft loitering above a smaller GPS-denied SUAS. This larger aircraft is assumed to have greater resources which can overcome the GPS jamming and provide range information to the SUAS flying a mission below. This research demonstrates that using a ranging update combined with an aircraft motion model and visual odometry can greatly improve the accuracy of a SUASs estimated position in a GPS-denied environment

    Real-Time Implementation of Vision-Aided Monocular Navigation for Small Fixed-Wing Unmanned Aerial Systems

    Get PDF
    The goal of this project was to develop and implement algorithms to demonstrate real-time positioning of a UAV using a monocular camera combined with previously collected orthorectified imagery. Unlike previous tests, this project did not utilize a full inertial navigation system (INS) for attitude, but instead had to rely on the attitude obtained by inexpensive commercial off-the-shelf (COTS) autopilots. The system consisted of primarily COTS components and open-source software, and was own over Camp Atterbury, IN for a sequence of flight tests in Fall 2015. The system obtained valid solutions over much of the flight path, identifying features in the flight image, matching those features with a database of features, and then solving both the 6DOF solution, and an attitude-aided 3DOF solution. The tests demonstrated that such attitude aiding is beneficial, since the horizontal DRMS of the 6DOF solution was 59m, whereas the 3DOF solution DRMS was 15m. Post processing was done to improve the algorithm to correct for system errors, obtaining a 3DOF solution DRMS of 8.22 meters. Overall, this project increased our understanding of the capabilities and limitations of real-time vision-aided navigation, and demonstrated that such navigation is possible on a relatively small platform with limited computational power

    Robust Scale Initialization for Long-Range Stereo Visual Odometry

    Get PDF
    Abstract-Achieving a robust, accurately scaled pose estimate in long-range stereo presents significant challenges. For large scene depths, triangulation from a single stereo pair is inadequate and noisy. Additionally, vibration and flexible rigs in airborne applications mean accurate calibrations are often compromised. This paper presents a technique for accurately initializing a long-range stereo VO algorithm at large scene depth, with accurate scale, without explicitly computing structure from rigidly fixed camera pairs. By performing a monocular pose estimate over a window of frames from a single camera, followed by adding the secondary camera frames in a modified bundle adjustment, an accurate, metrically scaled pose estimate can be found. To achieve this the scale of the stereo pair is included in the optimization as an additional parameter. Results are presented both on simulated and field gathered data from a fixed-wing UAV flying at significant altitude, where the epipolar geometry is inaccurate due to structural deformation and triangulation from a single pair is insufficient. Comparisons are made with more conventional VO techniques where the scale is not explicitly optimized, and demonstrated over repeated trials to indicate robustness

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments

    Get PDF
    The design of novel UAV systems and the use of UAV platforms integrated with robotic sensing and imaging techniques, as well as the development of processing workflows and the capacity of ultra-high temporal and spatial resolution data, have enabled a rapid uptake of UAVs and drones across several industries and application domains.This book provides a forum for high-quality peer-reviewed papers that broaden awareness and understanding of single- and multiple-UAV developments for remote sensing applications, and associated developments in sensor technology, data processing and communications, and UAV system design and sensing capabilities in GPS-enabled and, more broadly, Global Navigation Satellite System (GNSS)-enabled and GPS/GNSS-denied environments.Contributions include:UAV-based photogrammetry, laser scanning, multispectral imaging, hyperspectral imaging, and thermal imaging;UAV sensor applications; spatial ecology; pest detection; reef; forestry; volcanology; precision agriculture wildlife species tracking; search and rescue; target tracking; atmosphere monitoring; chemical, biological, and natural disaster phenomena; fire prevention, flood prevention; volcanic monitoring; pollution monitoring; microclimates; and land use;Wildlife and target detection and recognition from UAV imagery using deep learning and machine learning techniques;UAV-based change detection
    corecore