765 research outputs found

    Large Scale In Silico Screening on Grid Infrastructures

    Get PDF
    Large-scale grid infrastructures for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale in silico docking within the framework of the WISDOM initiative against Malaria and Avian Flu requiring about 105 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These achievements demonstrated the relevance of large-scale grid infrastructures for the virtual screening by molecular docking. This also allowed evaluating the performances of the grid infrastructures and to identify specific issues raised by large-scale deployment.Comment: 14 pages, 2 figures, 2 tables, The Third International Life Science Grid Workshop, LSGrid 2006, Yokohama, Japan, 13-14 october 2006, to appear in the proceeding

    Virtual Screening on Large Scale Grids

    Get PDF
    PCSV, article in press in Parallel ComputingLarge scale grids for in silico drug discovery open opportunities of particular interest to neglected and emerging diseases. In 2005 and 2006, we have been able to deploy large scale virtual docking within the framework of the WISDOM initiative against malaria and avian influenza requiring about 100 years of CPU on the EGEE, Auvergrid and TWGrid infrastructures. These achievements demonstrated the relevance of large scale grids for the virtual screening by molecular docking. This also allowed evaluating the performances of the grid infrastructures and to identify specific issues raised by large scale deployment

    Grid enabled virtual screening against malaria

    Get PDF
    34 pages, 5 figures, 3 tables, to appear in Journal of Grid Computing - PCSV, à paraître dans Journal of Grid ComputingWISDOM is an international initiative to enable a virtual screening pipeline on a grid infrastructure. Its first attempt was to deploy large scale in silico docking on a public grid infrastructure. Protein-ligand docking is about computing the binding energy of a protein target to a library of potential drugs using a scoring algorithm. Previous deployments were either limited to one cluster, to grids of clusters in the tightly protected environment of a pharmaceutical laboratory or to pervasive grids. The first large scale docking experiment ran on the EGEE grid production service from 11 July 2005 to 19 August 2005 against targets relevant to research on malaria and saw over 41 million compounds docked for the equivalent of 80 years of CPU time. Up to 1,700 computers were simultaneously used in 15 countries around the world. Issues related to the deployment and the monitoring of the in silico docking experiment as well as experience with grid operation and services are reported in the paper. The main problem encountered for such a large scale deployment was the grid infrastructure stability. Although the overall success rate was above 80%, a lot of monitoring and supervision was still required at the application level to resubmit the jobs that failed. But the experiment demonstrated how grid infrastructures have a tremendous capacity to mobilize very large CPU resources for well targeted goals during a significant period of time. This success leads to a second computing challenge targeting Avian Flu neuraminidase N1

    Innovative in silico approaches to address avian flu using grid technology

    Get PDF
    The recent years have seen the emergence of diseases which have spread very quickly all around the world either through human travels like SARS or animal migration like avian flu. Among the biggest challenges raised by infectious emerging diseases, one is related to the constant mutation of the viruses which turns them into continuously moving targets for drug and vaccine discovery. Another challenge is related to the early detection and surveillance of the diseases as new cases can appear just anywhere due to the globalization of exchanges and the circulation of people and animals around the earth, as recently demonstrated by the avian flu epidemics. For 3 years now, a collaboration of teams in Europe and Asia has been exploring some innovative in silico approaches to better tackle avian flu taking advantage of the very large computing resources available on international grid infrastructures. Grids were used to study the impact of mutations on the effectiveness of existing drugs against H5N1 and to find potentially new leads active on mutated strains. Grids allow also the integration of distributed data in a completely secured way. The paper presents how we are currently exploring how to integrate the existing data sources towards a global surveillance network for molecular epidemiology.Comment: 7 pages, submitted to Infectious Disorders - Drug Target

    WISDOM-II: Screening against multiple targets implicated in malaria using computational grid infrastructures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite continuous efforts of the international community to reduce the impact of malaria on developing countries, no significant progress has been made in the recent years and the discovery of new drugs is more than ever needed. Out of the many proteins involved in the metabolic activities of the <it>Plasmodium </it>parasite, some are promising targets to carry out rational drug discovery.</p> <p>Motivation</p> <p>Recent years have witnessed the emergence of grids, which are highly distributed computing infrastructures particularly well fitted for embarrassingly parallel computations like docking. In 2005, a first attempt at using grids for large-scale virtual screening focused on plasmepsins and ended up in the identification of previously unknown scaffolds, which were confirmed in vitro to be active plasmepsin inhibitors. Following this success, a second deployment took place in the fall of 2006 focussing on one well known target, dihydrofolate reductase (DHFR), and on a new promising one, glutathione-S-transferase.</p> <p>Methods</p> <p>In silico drug design, especially vHTS is a widely and well-accepted technology in lead identification and lead optimization. This approach, therefore builds, upon the progress made in computational chemistry to achieve more accurate <it>in silico </it>docking and in information technology to design and operate large scale grid infrastructures.</p> <p>Results</p> <p>On the computational side, a sustained infrastructure has been developed: docking at large scale, using different strategies in result analysis, storing of the results on the fly into MySQL databases and application of molecular dynamics refinement are MM-PBSA and MM-GBSA rescoring. The modeling results obtained are very promising. Based on the modeling results, <it>In vitro </it>results are underway for all the targets against which screening is performed.</p> <p>Conclusion</p> <p>The current paper describes the rational drug discovery activity at large scale, especially molecular docking using FlexX software on computational grids in finding hits against three different targets (PfGST, PfDHFR, PvDHFR (wild type and mutant forms) implicated in malaria. Grid-enabled virtual screening approach is proposed to produce focus compound libraries for other biological targets relevant to fight the infectious diseases of the developing world.</p

    Grid Added Value to Address Malaria

    Get PDF
    Through this paper, we call for a distributed, internet-based collaboration to address one of the worst plagues of our present world, malaria. The spirit is a non-proprietary peer-production of information-embedding goods. And we propose to use the grid technology to enable such a world wide "open source" like collaboration. The first step towards this vision has been achieved during the summer on the EGEE grid infrastructure where 46 million ligands were docked for a total amount of 80 CPU years in 6 weeks in the quest for new drugs.Comment: 7 pages, 1 figure, 6th IEEE International Symposium on Cluster Computing and the Grid, Singapore, 16-19 may 2006, to appear in the proceeding

    WISDOM: A Grid-Enabled Drug Discovery Initiative Against Malaria

    Get PDF
    The goal of this chapter is to present the WISDOM initiative, which is one of the main accomplishments in the use of grids for biomedical sciences achieved on grid infrastructures in Europe. Researchers in life sciences are among the most active scientifi c communities on the EGEE infrastructure. As a consequence, the biomedical virtual organization stands fourth in terms of resources consumed in 2007, with an average of 7000 jobs submitted every day to the grid and more than 4 million hours of CPU consumed in the last 12 months. Only three experiments on the CERN Large Hadron Collider have used more resources. Compared to particle physics, the use of resources is much less centralized as about 40 different scientifi c applications are now currently deployed on EGEE. Each of them requires an amount of CPU which ranges from a few to a few hundred CPU years. Thanks to the 20,000 processors available to the users of the biomedical virtual organization, crunching factors in the hundreds are witnessed routinely. Such performances were already achieved on supercomputers but at the cost of reservation and long delays in the access to resources. On the contrary, grid infrastructures are constantly open to the user communities. Such changes in the scale of the computing resources made continuously available to the researchers in biomedical sciences open opportunities for exploring new fi elds or changing the approach to existing challenges. In this chapter, we would like to show the potential impact of grids in the fi eld of drug discovery through the example of the WISDOM initiative

    Grid enabled high throughput virtual screening against four different targets implicated in malaria

    Get PDF
    PCSVInternational audienceAfter having deployed a first data challenge on malaria and a second one on avian flu, respectively in summer 2005 and spring 2006, we are demonstrating here again how efficiently the computational grids can be used to produce massive docking data at a high-throughput. During more than 2 months and a half, we have achieved at least 140 million dockings, representing an average throughput of almost 80,000 dockings per hour. This was made possible by the availability of thousands of CPUs through different infrastructures worldwide. Through the acquired experience, the WISDOM production environment is evolving to enable an easy and fault-tolerant deployment of biological tools; in this case it is the FlexX commercial docking software which is used to dock the whole ZINC database against 4 different targets
    • …
    corecore