7,300 research outputs found

    Large Scale GAN Training for High Fidelity Natural Image Synthesis

    Full text link
    Despite recent progress in generative image modeling, successfully generating high-resolution, diverse samples from complex datasets such as ImageNet remains an elusive goal. To this end, we train Generative Adversarial Networks at the largest scale yet attempted, and study the instabilities specific to such scale. We find that applying orthogonal regularization to the generator renders it amenable to a simple "truncation trick," allowing fine control over the trade-off between sample fidelity and variety by reducing the variance of the Generator's input. Our modifications lead to models which set the new state of the art in class-conditional image synthesis. When trained on ImageNet at 128x128 resolution, our models (BigGANs) achieve an Inception Score (IS) of 166.5 and Frechet Inception Distance (FID) of 7.4, improving over the previous best IS of 52.52 and FID of 18.6

    High-Fidelity Image Generation With Fewer Labels

    Full text link
    Deep generative models are becoming a cornerstone of modern machine learning. Recent work on conditional generative adversarial networks has shown that learning complex, high-dimensional distributions over natural images is within reach. While the latest models are able to generate high-fidelity, diverse natural images at high resolution, they rely on a vast quantity of labeled data. In this work we demonstrate how one can benefit from recent work on self- and semi-supervised learning to outperform the state of the art on both unsupervised ImageNet synthesis, as well as in the conditional setting. In particular, the proposed approach is able to match the sample quality (as measured by FID) of the current state-of-the-art conditional model BigGAN on ImageNet using only 10% of the labels and outperform it using 20% of the labels.Comment: Mario Lucic, Michael Tschannen, and Marvin Ritter contributed equally to this work. ICML 2019 camera-ready version. Code available at https://github.com/google/compare_ga

    GANSynth: Adversarial Neural Audio Synthesis

    Full text link
    Efficient audio synthesis is an inherently difficult machine learning task, as human perception is sensitive to both global structure and fine-scale waveform coherence. Autoregressive models, such as WaveNet, model local structure at the expense of global latent structure and slow iterative sampling, while Generative Adversarial Networks (GANs), have global latent conditioning and efficient parallel sampling, but struggle to generate locally-coherent audio waveforms. Herein, we demonstrate that GANs can in fact generate high-fidelity and locally-coherent audio by modeling log magnitudes and instantaneous frequencies with sufficient frequency resolution in the spectral domain. Through extensive empirical investigations on the NSynth dataset, we demonstrate that GANs are able to outperform strong WaveNet baselines on automated and human evaluation metrics, and efficiently generate audio several orders of magnitude faster than their autoregressive counterparts.Comment: Colab Notebook: http://goo.gl/magenta/gansynth-dem

    Generative Adversarial Network in Medical Imaging: A Review

    Full text link
    Generative adversarial networks have gained a lot of attention in the computer vision community due to their capability of data generation without explicitly modelling the probability density function. The adversarial loss brought by the discriminator provides a clever way of incorporating unlabeled samples into training and imposing higher order consistency. This has proven to be useful in many cases, such as domain adaptation, data augmentation, and image-to-image translation. These properties have attracted researchers in the medical imaging community, and we have seen rapid adoption in many traditional and novel applications, such as image reconstruction, segmentation, detection, classification, and cross-modality synthesis. Based on our observations, this trend will continue and we therefore conducted a review of recent advances in medical imaging using the adversarial training scheme with the hope of benefiting researchers interested in this technique.Comment: 24 pages; v4; added missing references from before Jan 1st 2019; accepted to MedI

    High Fidelity Face Manipulation with Extreme Poses and Expressions

    Full text link
    Face manipulation has shown remarkable advances with the flourish of Generative Adversarial Networks. However, due to the difficulties of controlling structures and textures, it is challenging to model poses and expressions simultaneously, especially for the extreme manipulation at high-resolution. In this paper, we propose a novel framework that simplifies face manipulation into two correlated stages: a boundary prediction stage and a disentangled face synthesis stage. The first stage models poses and expressions jointly via boundary images. Specifically, a conditional encoder-decoder network is employed to predict the boundary image of the target face in a semi-supervised way. Pose and expression estimators are introduced to improve the prediction performance. In the second stage, the predicted boundary image and the input face image are encoded into the structure and the texture latent space by two encoder networks, respectively. A proxy network and a feature threshold loss are further imposed to disentangle the latent space. Furthermore, due to the lack of high-resolution face manipulation databases to verify the effectiveness of our method, we collect a new high-quality Multi-View Face (MVF-HQ) database. It contains 120,283 images at 6000x4000 resolution from 479 identities with diverse poses, expressions, and illuminations. MVF-HQ is much larger in scale and much higher in resolution than publicly available high-resolution face manipulation databases. We will release MVF-HQ soon to push forward the advance of face manipulation. Qualitative and quantitative experiments on four databases show that our method dramatically improves the synthesis quality.Comment: Accepted by IEEE Transactions on Information Forensics and Security (TIFS

    Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

    Full text link
    In this paper we introduce a generative parametric model capable of producing high quality samples of natural images. Our approach uses a cascade of convolutional networks within a Laplacian pyramid framework to generate images in a coarse-to-fine fashion. At each level of the pyramid, a separate generative convnet model is trained using the Generative Adversarial Nets (GAN) approach (Goodfellow et al.). Samples drawn from our model are of significantly higher quality than alternate approaches. In a quantitative assessment by human evaluators, our CIFAR10 samples were mistaken for real images around 40% of the time, compared to 10% for samples drawn from a GAN baseline model. We also show samples from models trained on the higher resolution images of the LSUN scene dataset

    Pros and Cons of GAN Evaluation Measures

    Full text link
    Generative models, in particular generative adversarial networks (GANs), have received significant attention recently. A number of GAN variants have been proposed and have been utilized in many applications. Despite large strides in terms of theoretical progress, evaluating and comparing GANs remains a daunting task. While several measures have been introduced, as of yet, there is no consensus as to which measure best captures strengths and limitations of models and should be used for fair model comparison. As in other areas of computer vision and machine learning, it is critical to settle on one or few good measures to steer the progress in this field. In this paper, I review and critically discuss more than 24 quantitative and 5 qualitative measures for evaluating generative models with a particular emphasis on GAN-derived models. I also provide a set of 7 desiderata followed by an evaluation of whether a given measure or a family of measures is compatible with them

    Decompose to manipulate: Manipulable Object Synthesis in 3D Medical Images with Structured Image Decomposition

    Full text link
    The performance of medical image analysis systems is constrained by the quantity of high-quality image annotations. Such systems require data to be annotated by experts with years of training, especially when diagnostic decisions are involved. Such datasets are thus hard to scale up. In this context, it is hard for supervised learning systems to generalize to the cases that are rare in the training set but would be present in real-world clinical practices. We believe that the synthetic image samples generated by a system trained on the real data can be useful for improving the supervised learning tasks in the medical image analysis applications. Allowing the image synthesis to be manipulable could help synthetic images provide complementary information to the training data rather than simply duplicating the real-data manifold. In this paper, we propose a framework for synthesizing 3D objects, such as pulmonary nodules, in 3D medical images with manipulable properties. The manipulation is enabled by decomposing of the object of interests into its segmentation mask and a 1D vector containing the residual information. The synthetic object is refined and blended into the image context with two adversarial discriminators. We evaluate the proposed framework on lung nodules in 3D chest CT images and show that the proposed framework could generate realistic nodules with manipulable shapes, textures and locations, etc. By sampling from both the synthetic nodules and the real nodules from 2800 3D CT volumes during the classifier training, we show the synthetic patches could improve the overall nodule detection performance by average 8.44% competition performance metric (CPM) score

    Semantic Image Synthesis with Spatially-Adaptive Normalization

    Full text link
    We propose spatially-adaptive normalization, a simple but effective layer for synthesizing photorealistic images given an input semantic layout. Previous methods directly feed the semantic layout as input to the deep network, which is then processed through stacks of convolution, normalization, and nonlinearity layers. We show that this is suboptimal as the normalization layers tend to ``wash away'' semantic information. To address the issue, we propose using the input layout for modulating the activations in normalization layers through a spatially-adaptive, learned transformation. Experiments on several challenging datasets demonstrate the advantage of the proposed method over existing approaches, regarding both visual fidelity and alignment with input layouts. Finally, our model allows user control over both semantic and style. Code is available at https://github.com/NVlabs/SPADE .Comment: Accepted as a CVPR 2019 oral pape

    Identity Preserving Face Completion for Large Ocular Region Occlusion

    Full text link
    We present a novel deep learning approach to synthesize complete face images in the presence of large ocular region occlusions. This is motivated by recent surge of VR/AR displays that hinder face-to-face communications. Different from the state-of-the-art face inpainting methods that have no control over the synthesized content and can only handle frontal face pose, our approach can faithfully recover the missing content under various head poses while preserving the identity. At the core of our method is a novel generative network with dedicated constraints to regularize the synthesis process. To preserve the identity, our network takes an arbitrary occlusion-free image of the target identity to infer the missing content, and its high-level CNN features as an identity prior to regularize the searching space of generator. Since the input reference image may have a different pose, a pose map and a novel pose discriminator are further adopted to supervise the learning of implicit pose transformations. Our method is capable of generating coherent facial inpainting with consistent identity over videos with large variations of head motions. Experiments on both synthesized and real data demonstrate that our method greatly outperforms the state-of-the-art methods in terms of both synthesis quality and robustness.Comment: 12 pages,9 figure
    corecore