1,344 research outputs found

    Systems biology surveillance decrypts pathological transcriptome remodeling

    Get PDF

    Privacy in the Genomic Era

    Get PDF
    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward

    Identification of Biomarker Systems of Autism Spectrum Disorder and Uterine Cancer

    Get PDF
    Complex diseases and disorders pose a challenge to scientists due to their variable and often inconsistent genetic and environmental underpinnings across affected individuals. Because of this variability, large condition-specific datasets and corresponding analytical tools and approaches are being curated as resources to investigate potential genetic trends in complex diseases and disorders. In this Dissertation, I used DNA- and RNA-based resources to discover polygenic biosignatures associated with Autism Spectrum Disorder (ASD) or uterine cancer. To explore the intersection of small-effect common DNA variants and regulation in ASD, I discovered and analyzed trends in allelic associations at eQTLs within ASD-affected individuals. Association of eQTLs underlying any phenotype brings the genetic variation closer to biochemical mechanism leading to phenotypic expression. Uterine cancer was additionally investigated using gene expression profiles from normal and cancerous uterine tissue samples, from which gene co-expression networks and corresponding gene regulatory networks were built and further studied. The biomarker discoveries discussed here reflect the importance of dry lab resources and the potential they hold for future discovery

    Cloud-based genomics pipelines for ophthalmology: Reviewed from research to clinical practice

    Get PDF
    Aim: To familiarize clinicians with clinical genomics, and to describe the potential of cloud computing for enabling the future routine use of genomics in eye hospital settings. Design: Review article exploring the potential for cloud-based genomic pipelines in eye hospitals. Methods: Narrative review of the literature relevant to clinical genomics and cloud computing, using PubMed and Google Scholar. A broad overview of these fields is provided, followed by key examples of their integration. Results: Cloud computing could benefit clinical genomics due to scalability of resources, potentially lower costs, and ease of data sharing between multiple institutions. Challenges include complex pricing of services, costs from mistakes or experimentation, data security, and privacy concerns. Conclusions and future perspectives: Clinical genomics is likely to become more routinely used in clinical practice. Currently this is delivered in highly specialist centers. In the future, cloud computing could enable delivery of clinical genomics services in non-specialist hospital settings, in a fast, cost-effective way, whilst enhancing collaboration between clinical and research teams

    Systems Analytics and Integration of Big Omics Data

    Get PDF
    A “genotype"" is essentially an organism's full hereditary information which is obtained from its parents. A ""phenotype"" is an organism's actual observed physical and behavioral properties. These may include traits such as morphology, size, height, eye color, metabolism, etc. One of the pressing challenges in computational and systems biology is genotype-to-phenotype prediction. This is challenging given the amount of data generated by modern Omics technologies. This “Big Data” is so large and complex that traditional data processing applications are not up to the task. Challenges arise in collection, analysis, mining, sharing, transfer, visualization, archiving, and integration of these data. In this Special Issue, there is a focus on the systems-level analysis of Omics data, recent developments in gene ontology annotation, and advances in biological pathways and network biology. The integration of Omics data with clinical and biomedical data using machine learning is explored. This Special Issue covers new methodologies in the context of gene–environment interactions, tissue-specific gene expression, and how external factors or host genetics impact the microbiome

    Precision medicine in the era of artificial intelligence: implications in chronic disease management.

    Get PDF
    Aberrant metabolism is the root cause of several serious health issues, creating a huge burden to health and leading to diminished life expectancy. A dysregulated metabolism induces the secretion of several molecules which in turn trigger the inflammatory pathway. Inflammation is the natural reaction of the immune system to a variety of stimuli, such as pathogens, damaged cells, and harmful substances. Metabolically triggered inflammation, also called metaflammation or low-grade chronic inflammation, is the consequence of a synergic interaction between the host and the exposome-a combination of environmental drivers, including diet, lifestyle, pollutants and other factors throughout the life span of an individual. Various levels of chronic inflammation are associated with several lifestyle-related diseases such as diabetes, obesity, metabolic associated fatty liver disease (MAFLD), cancers, cardiovascular disorders (CVDs), autoimmune diseases, and chronic lung diseases. Chronic diseases are a growing concern worldwide, placing a heavy burden on individuals, families, governments, and health-care systems. New strategies are needed to empower communities worldwide to prevent and treat these diseases. Precision medicine provides a model for the next generation of lifestyle modification. This will capitalize on the dynamic interaction between an individual's biology, lifestyle, behavior, and environment. The aim of precision medicine is to design and improve diagnosis, therapeutics and prognostication through the use of large complex datasets that incorporate individual gene, function, and environmental variations. The implementation of high-performance computing (HPC) and artificial intelligence (AI) can predict risks with greater accuracy based on available multidimensional clinical and biological datasets. AI-powered precision medicine provides clinicians with an opportunity to specifically tailor early interventions to each individual. In this article, we discuss the strengths and limitations of existing and evolving recent, data-driven technologies, such as AI, in preventing, treating and reversing lifestyle-related diseases

    Artificial Intelligence in Oncology Drug Discovery and Development

    Get PDF
    There exists a profound conflict at the heart of oncology drug development. The efficiency of the drug development process is falling, leading to higher costs per approved drug, at the same time personalised medicine is limiting the target market of each new medicine. Even as the global economic burden of cancer increases, the current paradigm in drug development is unsustainable. In this book, we discuss the development of techniques in machine learning for improving the efficiency of oncology drug development and delivering cost-effective precision treatment. We consider how to structure data for drug repurposing and target identification, how to improve clinical trials and how patients may view artificial intelligence

    Molecular mechanisms of Eda-mediated adaptation to freshwater in threespine stickleback.

    Get PDF
    A main goal of evolutionary biology is to understand the genetic basis of adaptive evolution. Although the genes that underlie some adaptive phenotypes are now known, the molecular pathways and regulatory mechanisms mediating the phenotypic effects of those genes often remain a black box. Unveiling this black box is necessary to fully understand the genetic basis of adaptive phenotypes, and to understand why particular genes might be used during phenotypic evolution. Here, we investigated which genes and regulatory mechanisms are mediating the phenotypic effects of the Eda haplotype, a locus responsible for the loss of lateral plates and changes in the sensory lateral line of freshwater threespine stickleback (Gasterosteus aculeatus) populations. Using a combination of RNAseq and a cross design that isolated the Eda haplotype on a fixed genomic background, we found that the Eda haplotype affects both gene expression and alternative splicing of genes related to bone development, neuronal development and immunity. These include genes in conserved pathways, like the BMP, netrin and bradykinin signalling pathways, known to play a role in these biological processes. Furthermore, we found that differentially expressed and differentially spliced genes had different levels of connectivity and expression, suggesting that these factors might influence which regulatory mechanisms are used during phenotypic evolution. Taken together, these results provide a better understanding of the mechanisms mediating the effects of an important adaptive locus in stickleback and suggest that alternative splicing could be an important regulatory mechanism mediating adaptive phenotypes

    Comparison of conventional statistical methods with machine learning in medicine: Diagnosis, drug development, and treatment

    Get PDF
    Futurists have anticipated that novel autonomous technologies, embedded with machine learning (ML), will substantially influence healthcare. ML is focused on making predictions as accurate as possible, while traditional statistical models are aimed at inferring relationships between variables. The benefits of ML comprise flexibility and scalability compared with conventional statistical approaches, which makes it deployable for several tasks, such as diagnosis and classification, and survival predictions. However, much of ML-based analysis remains scattered, lacking a cohesive structure. There is a need to evaluate and compare the performance of well-developed conventional statistical methods and ML on patient outcomes, such as survival, response to treatment, and patient-reported outcomes (PROs). In this article, we compare the usefulness and limitations of traditional statistical methods and ML, when applied to the medical field. Traditional statistical methods seem to be more useful when the number of cases largely exceeds the number of variables under study and a priori knowledge on the topic under study is substantial such as in public health. ML could be more suited in highly innovative fields with a huge bulk of data, such as omics, radiodiagnostics, drug development, and personalized treatment. Integration of the two approaches should be preferred over a unidirectional choice of either approach
    corecore