177,795 research outputs found

    Identification of weakly coupled multiphysics problems. Application to the inverse problem of electrocardiography

    Get PDF
    This work addresses the inverse problem of electrocardiography from a new perspective, by combining electrical and mechanical measurements. Our strategy relies on the defini-tion of a model of the electromechanical contraction which is registered on ECG data but also on measured mechanical displacements of the heart tissue typically extracted from medical images. In this respect, we establish in this work the convergence of a sequential estimator which combines for such coupled problems various state of the art sequential data assimilation methods in a unified consistent and efficient framework. Indeed we ag-gregate a Luenberger observer for the mechanical state and a Reduced Order Unscented Kalman Filter applied on the parameters to be identified and a POD projection of the electrical state. Then using synthetic data we show the benefits of our approach for the estimation of the electrical state of the ventricles along the heart beat compared with more classical strategies which only consider an electrophysiological model with ECG measurements. Our numerical results actually show that the mechanical measurements improve the identifiability of the electrical problem allowing to reconstruct the electrical state of the coupled system more precisely. Therefore, this work is intended to be a first proof of concept, with theoretical justifications and numerical investigations, of the ad-vantage of using available multi-modal observations for the estimation and identification of an electromechanical model of the heart

    Estimating hyperparameters and instrument parameters in regularized inversion. Illustration for SPIRE/Herschel map making

    Full text link
    We describe regularized methods for image reconstruction and focus on the question of hyperparameter and instrument parameter estimation, i.e. unsupervised and myopic problems. We developed a Bayesian framework that is based on the \post density for all unknown quantities, given the observations. This density is explored by a Markov Chain Monte-Carlo sampling technique based on a Gibbs loop and including a Metropolis-Hastings step. The numerical evaluation relies on the SPIRE instrument of the Herschel observatory. Using simulated and real observations, we show that the hyperparameters and instrument parameters are correctly estimated, which opens up many perspectives for imaging in astrophysics

    Sparse Hopfield network reconstruction with â„“1\ell_{1} regularization

    Full text link
    We propose an efficient strategy to infer sparse Hopfield network based on magnetizations and pairwise correlations measured through Glauber samplings. This strategy incorporates the ℓ1\ell_{1} regularization into the Bethe approximation by a quadratic approximation to the log-likelihood, and is able to further reduce the inference error of the Bethe approximation without the regularization. The optimal regularization parameter is observed to be of the order of M−νM^{-\nu} where MM is the number of independent samples. The value of the scaling exponent depends on the performance measure. ν≃0.5001\nu\simeq0.5001 for root mean squared error measure while ν≃0.2743\nu\simeq0.2743 for misclassification rate measure. The efficiency of this strategy is demonstrated for the sparse Hopfield model, but the method is generally applicable to other diluted mean field models. In particular, it is simple in implementation without heavy computational cost.Comment: 9 pages, 3 figures, Eur. Phys. J. B (in press

    Imprecise dynamic walking with time-projection control

    Get PDF
    We present a new walking foot-placement controller based on 3LP, a 3D model of bipedal walking that is composed of three pendulums to simulate falling, swing and torso dynamics. Taking advantage of linear equations and closed-form solutions of the 3LP model, our proposed controller projects intermediate states of the biped back to the beginning of the phase for which a discrete LQR controller is designed. After the projection, a proper control policy is generated by this LQR controller and used at the intermediate time. This control paradigm reacts to disturbances immediately and includes rules to account for swing dynamics and leg-retraction. We apply it to a simulated Atlas robot in position-control, always commanded to perform in-place walking. The stance hip joint in our robot keeps the torso upright to let the robot naturally fall, and the swing hip joint tracks the desired footstep location. Combined with simple Center of Pressure (CoP) damping rules in the low-level controller, our foot-placement enables the robot to recover from strong pushes and produce periodic walking gaits when subject to persistent sources of disturbance, externally or internally. These gaits are imprecise, i.e., emergent from asymmetry sources rather than precisely imposing a desired velocity to the robot. Also in extreme conditions, restricting linearity assumptions of the 3LP model are often violated, but the system remains robust in our simulations. An extensive analysis of closed-loop eigenvalues, viable regions and sensitivity to push timings further demonstrate the strengths of our simple controller
    • …
    corecore