2,756 research outputs found

    Random subcube intersection graphs I: cliques and covering

    Full text link
    We study random subcube intersection graphs, that is, graphs obtained by selecting a random collection of subcubes of a fixed hypercube QdQ_d to serve as the vertices of the graph, and setting an edge between a pair of subcubes if their intersection is non-empty. Our motivation for considering such graphs is to model `random compatibility' between vertices in a large network. For both of the models considered in this paper, we determine the thresholds for covering the underlying hypercube QdQ_d and for the appearance of s-cliques. In addition we pose some open problems.Comment: 38 pages, 1 figur

    Short proofs of some extremal results

    Get PDF
    We prove several results from different areas of extremal combinatorics, giving complete or partial solutions to a number of open problems. These results, coming from areas such as extremal graph theory, Ramsey theory and additive combinatorics, have been collected together because in each case the relevant proofs are quite short.Comment: 19 page

    Learning multifractal structure in large networks

    Full text link
    Generating random graphs to model networks has a rich history. In this paper, we analyze and improve upon the multifractal network generator (MFNG) introduced by Palla et al. We provide a new result on the probability of subgraphs existing in graphs generated with MFNG. From this result it follows that we can quickly compute moments of an important set of graph properties, such as the expected number of edges, stars, and cliques. Specifically, we show how to compute these moments in time complexity independent of the size of the graph and the number of recursive levels in the generative model. We leverage this theory to a new method of moments algorithm for fitting large networks to MFNG. Empirically, this new approach effectively simulates properties of several social and information networks. In terms of matching subgraph counts, our method outperforms similar algorithms used with the Stochastic Kronecker Graph model. Furthermore, we present a fast approximation algorithm to generate graph instances following the multi- fractal structure. The approximation scheme is an improvement over previous methods, which ran in time complexity quadratic in the number of vertices. Combined, our method of moments and fast sampling scheme provide the first scalable framework for effectively modeling large networks with MFNG
    • …
    corecore