2,675 research outputs found

    Structure-Aware Classification using Supervised Dictionary Learning

    Full text link
    In this paper, we propose a supervised dictionary learning algorithm that aims to preserve the local geometry in both dimensions of the data. A graph-based regularization explicitly takes into account the local manifold structure of the data points. A second graph regularization gives similar treatment to the feature domain and helps in learning a more robust dictionary. Both graphs can be constructed from the training data or learned and adapted along the dictionary learning process. The combination of these two terms promotes the discriminative power of the learned sparse representations and leads to improved classification accuracy. The proposed method was evaluated on several different datasets, representing both single-label and multi-label classification problems, and demonstrated better performance compared with other dictionary based approaches

    Collaborative Representation based Classification for Face Recognition

    Full text link
    By coding a query sample as a sparse linear combination of all training samples and then classifying it by evaluating which class leads to the minimal coding residual, sparse representation based classification (SRC) leads to interesting results for robust face recognition. It is widely believed that the l1- norm sparsity constraint on coding coefficients plays a key role in the success of SRC, while its use of all training samples to collaboratively represent the query sample is rather ignored. In this paper we discuss how SRC works, and show that the collaborative representation mechanism used in SRC is much more crucial to its success of face classification. The SRC is a special case of collaborative representation based classification (CRC), which has various instantiations by applying different norms to the coding residual and coding coefficient. More specifically, the l1 or l2 norm characterization of coding residual is related to the robustness of CRC to outlier facial pixels, while the l1 or l2 norm characterization of coding coefficient is related to the degree of discrimination of facial features. Extensive experiments were conducted to verify the face recognition accuracy and efficiency of CRC with different instantiations.Comment: It is a substantial revision of a previous conference paper (L. Zhang, M. Yang, et al. "Sparse Representation or Collaborative Representation: Which Helps Face Recognition?" in ICCV 2011
    • …
    corecore