6,288 research outputs found

    Approximating the Spectrum of a Graph

    Full text link
    The spectrum of a network or graph G=(V,E)G=(V,E) with adjacency matrix AA, consists of the eigenvalues of the normalized Laplacian L=ID1/2AD1/2L= I - D^{-1/2} A D^{-1/2}. This set of eigenvalues encapsulates many aspects of the structure of the graph, including the extent to which the graph posses community structures at multiple scales. We study the problem of approximating the spectrum λ=(λ1,,λV)\lambda = (\lambda_1,\dots,\lambda_{|V|}), 0λ1,,λV20 \le \lambda_1,\le \dots, \le \lambda_{|V|}\le 2 of GG in the regime where the graph is too large to explicitly calculate the spectrum. We present a sublinear time algorithm that, given the ability to query a random node in the graph and select a random neighbor of a given node, computes a succinct representation of an approximation λ~=(λ~1,,λ~V)\widetilde \lambda = (\widetilde \lambda_1,\dots,\widetilde \lambda_{|V|}), 0λ~1,,λ~V20 \le \widetilde \lambda_1,\le \dots, \le \widetilde \lambda_{|V|}\le 2 such that λ~λ1ϵV\|\widetilde \lambda - \lambda\|_1 \le \epsilon |V|. Our algorithm has query complexity and running time exp(O(1/ϵ))exp(O(1/\epsilon)), independent of the size of the graph, V|V|. We demonstrate the practical viability of our algorithm on 15 different real-world graphs from the Stanford Large Network Dataset Collection, including social networks, academic collaboration graphs, and road networks. For the smallest of these graphs, we are able to validate the accuracy of our algorithm by explicitly calculating the true spectrum; for the larger graphs, such a calculation is computationally prohibitive. In addition we study the implications of our algorithm to property testing in the bounded degree graph model

    Metrics for Graph Comparison: A Practitioner's Guide

    Full text link
    Comparison of graph structure is a ubiquitous task in data analysis and machine learning, with diverse applications in fields such as neuroscience, cyber security, social network analysis, and bioinformatics, among others. Discovery and comparison of structures such as modular communities, rich clubs, hubs, and trees in data in these fields yields insight into the generative mechanisms and functional properties of the graph. Often, two graphs are compared via a pairwise distance measure, with a small distance indicating structural similarity and vice versa. Common choices include spectral distances (also known as λ\lambda distances) and distances based on node affinities. However, there has of yet been no comparative study of the efficacy of these distance measures in discerning between common graph topologies and different structural scales. In this work, we compare commonly used graph metrics and distance measures, and demonstrate their ability to discern between common topological features found in both random graph models and empirical datasets. We put forward a multi-scale picture of graph structure, in which the effect of global and local structure upon the distance measures is considered. We make recommendations on the applicability of different distance measures to empirical graph data problem based on this multi-scale view. Finally, we introduce the Python library NetComp which implements the graph distances used in this work

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Eigenvalue Outliers of non-Hermitian Random Matrices with a Local Tree Structure

    Get PDF
    Spectra of sparse non-Hermitian random matrices determine the dynamics of complex processes on graphs. Eigenvalue outliers in the spectrum are of particular interest, since they determine the stationary state and the stability of dynamical processes. We present a general and exact theory for the eigenvalue outliers of random matrices with a local tree structure. For adjacency and Laplacian matrices of oriented random graphs, we derive analytical expressions for the eigenvalue outliers, the first moments of the distribution of eigenvector elements associated with an outlier, the support of the spectral density, and the spectral gap. We show that these spectral observables obey universal expressions, which hold for a broad class of oriented random matrices.Comment: 25 pages, 4 figure
    corecore