51 research outputs found

    Efficient Semidefinite Spectral Clustering via Lagrange Duality

    Full text link
    We propose an efficient approach to semidefinite spectral clustering (SSC), which addresses the Frobenius normalization with the positive semidefinite (p.s.d.) constraint for spectral clustering. Compared with the original Frobenius norm approximation based algorithm, the proposed algorithm can more accurately find the closest doubly stochastic approximation to the affinity matrix by considering the p.s.d. constraint. In this paper, SSC is formulated as a semidefinite programming (SDP) problem. In order to solve the high computational complexity of SDP, we present a dual algorithm based on the Lagrange dual formalization. Two versions of the proposed algorithm are proffered: one with less memory usage and the other with faster convergence rate. The proposed algorithm has much lower time complexity than that of the standard interior-point based SDP solvers. Experimental results on both UCI data sets and real-world image data sets demonstrate that 1) compared with the state-of-the-art spectral clustering methods, the proposed algorithm achieves better clustering performance; and 2) our algorithm is much more efficient and can solve larger-scale SSC problems than those standard interior-point SDP solvers.Comment: 13 page

    Symmetric Subspace Learning for Image Analysis

    Get PDF

    Visible, near infrared and thermal hand-based image biometric recognition

    Get PDF
    Biometric Recognition refers to the automatic identification of a person based on his or her anatomical characteristic or modality (i.e., fingerprint, palmprint, face) or behavioural (i.e., signature) characteristic. It is a fundamental key issue in any process concerned with security, shared resources, network transactions among many others. Arises as a fundamental problem widely known as recognition, and becomes a must step before permission is granted. It is supposed that protects key resources by only allowing those resources to be used by users that have been granted authority to use or to have access to them. Biometric systems can operate in verification mode, where the question to be solved is Am I who I claim I am? or in identification mode where the question is Who am I? Scientific community has increased its efforts in order to improve performance of biometric systems. Depending on the application many solutions go in the way of working with several modalities or combining different classification methods. Since increasing modalities require some user inconvenience many of these approaches will never reach the market. For example working with iris, face and fingerprints requires some user effort in order to help acquisition. This thesis addresses hand-based biometric system in a thorough way. The main contributions are in the direction of a new multi-spectral hand-based image database and methods for performance improvement. The main contributions are: A) The first multi-spectral hand-based image database from both hand faces: palmar and dorsal. Biometric database are a precious commodity for research, mainly when it offers something new like visual (VIS), near infrared (NIR) and thermography (TIR) images at a time. This database with a length of 100 users and 10 samples per user constitute a good starting point to check algorithms and hand suitability for recognition. B) In order to correctly deal with raw hand data, some image preprocessing steps are necessary. Three different segmentation phases are deployed to deal with VIS, NIR and TIR images specifically. Some of the tough questions to address: overexposed images, ring fingers and the cuffs, cold finger and noise image. Once image segmented, two different approaches are prepared to deal with the segmented data. These two approaches called: Holistic and Geometric define the main focus to extract the feature vector. These feature vectors can be used alone or can be combined in some way. Many questions can be stated: e.g. which approach is better for recognition?, Can fingers alone obtain better performance than the whole hand? and Is thermography hand information suitable for recognition due to its thermoregulation properties? A complete set of data ready to analyse, coming from the holistic and geometric approach have been designed and saved to test. Some innovative geometric approach related to curvature will be demonstrated. C) Finally the Biometric Dispersion Matcher (BDM) is used in order to explore how it works under different fusion schemes, as well as with different classification methods. It is the intention of this research to contrast what happen when using other methods close to BDM like Linear Discriminant Analysis (LDA). At this point, some interesting questions will be solved, e.g. by taking advantage of the finger segmentation (as five different modalities) to figure out if they can outperform what the whole hand data can teach us.El Reconeixement Biomètric fa referència a la identi cació automàtica de persones fent us d'alguna característica o modalitat anatòmica (empremta digital) o d'alguna característica de comportament (signatura). És un aspecte fonamental en qualsevol procés relacionat amb la seguretat, la compartició de recursos o les transaccions electròniques entre d'altres. És converteix en un pas imprescindible abans de concedir l'autorització. Aquesta autorització, s'entén que protegeix recursos clau, permeten així, que aquests siguin utilitzats pels usuaris que han estat autoritzats a utilitzar-los o a tenir-hi accés. Els sistemes biomètrics poden funcionar en veri cació, on es resol la pregunta: Soc jo qui dic que soc? O en identi cació on es resol la qüestió: Qui soc jo? La comunitat cientí ca ha incrementat els seus esforços per millorar el rendiment dels sistemes biomètrics. En funció de l'aplicació, diverses solucions s'adrecen a treballar amb múltiples modalitats o combinant diferents mètodes de classi cació. Donat que incrementar el número de modalitats, representa a la vegada problemes pels usuaris, moltes d'aquestes aproximacions no arriben mai al mercat. La tesis contribueix principalment en tres grans àrees, totes elles amb el denominador comú següent: Reconeixement biometric a través de les mans. i) La primera d'elles constitueix la base de qualsevol estudi, les dades. Per poder interpretar, i establir un sistema de reconeixement biomètric prou robust amb un clar enfocament a múltiples fonts d'informació, però amb el mínim esforç per part de l'usuari es construeix aquesta Base de Dades de mans multi espectral. Les bases de dades biomètriques constitueixen un recurs molt preuat per a la recerca; sobretot si ofereixen algun element nou com es el cas. Imatges de mans en diferents espectres electromagnètics: en visible (VIS), en infraroig (NIR) i en tèrmic (TIR). Amb un total de 100 usuaris, i 10 mostres per usuari, constitueix un bon punt de partida per estudiar i posar a prova sistemes multi biomètrics enfocats a les mans. ii) El segon bloc s'adreça a les dues aproximacions existents en la literatura per a tractar les dades en brut. Aquestes dues aproximacions, anomenades Holística (tracta la imatge com un tot) i Geomètrica (utilitza càlculs geomètrics) de neixen el focus alhora d'extreure el vector de característiques. Abans de tractar alguna d'aquestes dues aproximacions, però, és necessària l'aplicació de diferents tècniques de preprocessat digital de la imatge per obtenir les regions d'interès desitjades. Diferents problemes presents a les imatges s'han hagut de solucionar de forma original per a cadascuna de les tipologies de les imatges presents: VIS, NIR i TIR. VIS: imatges sobre exposades, anells, mànigues, braçalets. NIR: Ungles pintades, distorsió en forma de soroll en les imatges TIR: Dits freds La segona àrea presenta aspectes innovadors, ja que a part de segmentar la imatge de la ma, es segmenten tots i cadascun dels dits (feature-based approach). Així aconseguim contrastar la seva capacitat de reconeixement envers la ma de forma completa. Addicionalment es presenta un conjunt de procediments geomètrics amb la idea de comparar-los amb els provinents de l'extracció holística. La tercera i última àrea contrasta el procediment de classi cació anomenat Biometric Dispersion Matcher (BDM) amb diferents situacions. La primera relacionada amb l'efectivitat respecte d'altres mètode de reconeixement, com ara l'Anàlisi Lineal Discriminant (LDA) o bé mètodes com KNN o la regressió logística. Les altres situacions que s'analitzen tenen a veure amb múltiples fonts d'informació, quan s'apliquen tècniques de normalització i/o estratègies de combinació (fusió) per millorar els resultats. Els resultats obtinguts no deixen lloc per a la confusió, i són certament prometedors en el sentit que posen a la llum la importància de combinar informació complementària per obtenir rendiments superiors

    Joint optimization of manifold learning and sparse representations for face and gesture analysis

    Get PDF
    Face and gesture understanding algorithms are powerful enablers in intelligent vision systems for surveillance, security, entertainment, and smart spaces. In the future, complex networks of sensors and cameras may disperse directions to lost tourists, perform directory lookups in the office lobby, or contact the proper authorities in case of an emergency. To be effective, these systems will need to embrace human subtleties while interacting with people in their natural conditions. Computer vision and machine learning techniques have recently become adept at solving face and gesture tasks using posed datasets in controlled conditions. However, spontaneous human behavior under unconstrained conditions, or in the wild, is more complex and is subject to considerable variability from one person to the next. Uncontrolled conditions such as lighting, resolution, noise, occlusions, pose, and temporal variations complicate the matter further. This thesis advances the field of face and gesture analysis by introducing a new machine learning framework based upon dimensionality reduction and sparse representations that is shown to be robust in posed as well as natural conditions. Dimensionality reduction methods take complex objects, such as facial images, and attempt to learn lower dimensional representations embedded in the higher dimensional data. These alternate feature spaces are computationally more efficient and often more discriminative. The performance of various dimensionality reduction methods on geometric and appearance based facial attributes are studied leading to robust facial pose and expression recognition models. The parsimonious nature of sparse representations (SR) has successfully been exploited for the development of highly accurate classifiers for various applications. Despite the successes of SR techniques, large dictionaries and high dimensional data can make these classifiers computationally demanding. Further, sparse classifiers are subject to the adverse effects of a phenomenon known as coefficient contamination, where for example variations in pose may affect identity and expression recognition. This thesis analyzes the interaction between dimensionality reduction and sparse representations to present a unified sparse representation classification framework that addresses both issues of computational complexity and coefficient contamination. Semi-supervised dimensionality reduction is shown to mitigate the coefficient contamination problems associated with SR classifiers. The combination of semi-supervised dimensionality reduction with SR systems forms the cornerstone for a new face and gesture framework called Manifold based Sparse Representations (MSR). MSR is shown to deliver state-of-the-art facial understanding capabilities. To demonstrate the applicability of MSR to new domains, MSR is expanded to include temporal dynamics. The joint optimization of dimensionality reduction and SRs for classification purposes is a relatively new field. The combination of both concepts into a single objective function produce a relation that is neither convex, nor directly solvable. This thesis studies this problem to introduce a new jointly optimized framework. This framework, termed LGE-KSVD, utilizes variants of Linear extension of Graph Embedding (LGE) along with modified K-SVD dictionary learning to jointly learn the dimensionality reduction matrix, sparse representation dictionary, sparse coefficients, and sparsity-based classifier. By injecting LGE concepts directly into the K-SVD learning procedure, this research removes the support constraints K-SVD imparts on dictionary element discovery. Results are shown for facial recognition, facial expression recognition, human activity analysis, and with the addition of a concept called active difference signatures, delivers robust gesture recognition from Kinect or similar depth cameras

    Human gait identification and analysis

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.Human gait identification has become an active area of research due to increased security requirements. Human gait identification is a potential new tool for identifying individuals beyond traditional methods. The emergence of motion capture techniques provided a chance of high accuracy in identification because completely recorded gait information can be recorded compared with security cameras. The aim of this research was to build a practical method of gait identification and investigate the individual characteristics of gait. For this purpose, a gait identification approach was proposed, identification results were compared by different methods, and several studies about the individual characteristics of gait were performed. This research included the following: (1) a novel, effective set of gait features were proposed; (2) gait signatures were extracted by three different methods: statistical method, principal component analysis, and Fourier expansion method; (3) gait identification results were compared by these different methods; (4) two indicators were proposed to evaluate gait features for identification; (5) novel and clear definitions of gait phases and gait cycle were proposed; (6) gait features were investigated by gait phases; (7) principal component analysis and the fixing root method were used to elucidate which features were used to represent gait and why; (8) gait similarity was investigated; (9) gait attractiveness was investigated. This research proposed an efficient framework for identifying individuals from gait via a novel feature set based on 3D motion capture data. A novel evaluating method of gait signatures for identification was proposed. Three different gait signature extraction methods were applied and compared. The average identification rate was over 93%, with the best result close to 100%. This research also proposed a novel dividing method of gait phases, and the different appearances of gait features in eight gait phases were investigated. This research identified the similarities and asymmetric appearances between left body movement and right body movement in gait based on the proposed gait phase dividing method. This research also initiated an analysing method for gait features extraction by the fixing root method. A prediction model of gait attractiveness was built with reasonable accuracy by principal component analysis and linear regression of natural logarithm of parameters. A systematic relationship was observed between the motions of individual markers and the attractiveness ratings. The lower legs and feet were extracted as features of attractiveness by the fixing root method. As an extension of gait research, human seated motion was also investigated.This study is funded by the Dorothy Hodgkin Postgraduate Awards and Beijing East Gallery Co. Ltd
    corecore