4 research outputs found

    High-Performance Domain-Specific Library for Hydrologic Data Processing

    Get PDF
    Hydrologists must process many gigabytes of data for hydrologic simulations, which takes time and resources degrading performance. The performance issues are caused mainly by domain scientistsā€™ preference for using Python, which trades performance for productivity. In my thesis, I demonstrate that using the static compilation technique to compile Python to generate C code along with several optimizations reduces time and resources for hydrologic data processing. I developed a Domain Specific Library (DSL) which is a subset of Python and compiles to Sparse Polyhedral Framework - Intermediate Representation (SPF-IR), which allows opportunities for optimizations like read reduction fusion which are not available in Python. We fused the file I/O to perform computation on small chunks of data (stream computation) in order to reduce the memory footprint. The C code we generated from SPF-IR shows an average speed-up of 2.58x over the existing hand-optimized implementations and can totally eliminate the temporary storage required. DSL users can still enjoy the ease of use of Python but get performance better than the C code

    Easier Parallel Programming with Provably-Efficient Runtime Schedulers

    Get PDF
    Over the past decade processor manufacturers have pivoted from increasing uniprocessor performance to multicore architectures. However, utilizing this computational power has proved challenging for software developers. Many concurrency platforms and languages have emerged to address parallel programming challenges, yet writing correct and performant parallel code retains a reputation of being one of the hardest tasks a programmer can undertake. This dissertation will study how runtime scheduling systems can be used to make parallel programming easier. We address the difficulty in writing parallel data structures, automatically finding shared memory bugs, and reproducing non-deterministic synchronization bugs. Each of the systems presented depends on a novel runtime system which provides strong theoretical performance guarantees and performs well in practice

    STAPL-RTS: A Runtime System for Massive Parallelism

    Get PDF
    Modern High Performance Computing (HPC) systems are complex, with deep memory hierarchies and increasing use of computational heterogeneity via accelerators. When developing applications for these platforms, programmers are faced with two bad choices. On one hand, they can explicitly manage machine resources, writing programs using low level primitives from multiple APIs (e.g., MPI+OpenMP), creating efficient but rigid, difficult to extend, and non-portable implementations. Alternatively, users can adopt higher level programming environments, often at the cost of lost performance. Our approach is to maintain the high level nature of the application without sacrificing performance by relying on the transfer of high level, application semantic knowledge between layers of the software stack at an appropriate level of abstraction and performing optimizations on a per-layer basis. In this dissertation, we present the STAPL Runtime System (STAPL-RTS), a runtime system built for portable performance, suitable for massively parallel machines. While the STAPL-RTS abstracts and virtualizes the underlying platform for portability, it uses information from the upper layers to perform the appropriate low level optimizations that restore the performance characteristics. We outline the fundamental ideas behind the design of the STAPL-RTS, such as the always distributed communication model and its asynchronous operations. Through appropriate code examples and benchmarks, we prove that high level information allows applications written on top of the STAPL-RTS to attain the performance of optimized, but ad hoc solutions. Using the STAPL library, we demonstrate how this information guides important decisions in the STAPL-RTS, such as multi-protocol communication coordination and request aggregation using established C++ programming idioms. Recognizing that nested parallelism is of increasing interest for both expressivity and performance, we present a parallel model that combines asynchronous, one-sided operations with isolated nested parallel sections. Previous approaches to nested parallelism targeted either static applications through the use of blocking, isolated sections, or dynamic applications by using asynchronous mechanisms (i.e., recursive task spawning) which come at the expense of isolation. We combine the flexibility of dynamic task creation with the isolation guarantees of the static models by allowing the creation of asynchronous, one-sided nested parallel sections that work in tandem with the more traditional, synchronous, collective nested parallelism. This allows selective, run-time customizable use of parallelism in an application, based on the input and the algorithm

    Garbage collection optimization for non uniform memory access architectures

    Get PDF
    Cache-coherent non uniform memory access (ccNUMA) architecture is a standard design pattern for contemporary multicore processors, and future generations of architectures are likely to be NUMA. NUMA architectures create new challenges for managed runtime systems. Memory-intensive applications use the systemā€™s distributed memory banks to allocate data, and the automatic memory manager collects garbage left in these memory banks. The garbage collector may need to access remote memory banks, which entails access latency overhead and potential bandwidth saturation for the interconnection between memory banks. This dissertation makes ļ¬ve signiļ¬cant contributions to garbage collection on NUMA systems, with a case study implementation using the Hotspot Java Virtual Machine. It empirically studies data locality for a Stop-The-World garbage collector when tracing connected objects in NUMA heaps. First, it identiļ¬es a locality richness which exists naturally in connected objects that contain a root object and its reachable setā€” ā€˜rooted sub-graphsā€™. Second, this dissertation leverages the locality characteristic of rooted sub-graphs to develop a new NUMA-aware garbage collection mechanism. A garbage collector thread processes a local root and its reachable set, which is likely to have a large number of objects in the same NUMA node. Third, a garbage collector thread steals references from sibling threads that run on the same NUMA node to improve data locality. This research evaluates the new NUMA-aware garbage collector using seven benchmarks of an established real-world DaCapo benchmark suite. In addition, evaluation involves a widely used SPECjbb benchmark and Neo4J graph database Java benchmark, as well as an artiļ¬cial benchmark. The results of the NUMA-aware garbage collector on a multi-hop NUMA architecture show an average of 15% performance improvement. Furthermore, this performance gain is shown to be as a result of an improved NUMA memory access in a ccNUMA system. Fourth, the existing Hotspot JVM adaptive policy for conļ¬guring the number of garbage collection threads is shown to be suboptimal for current NUMA machines. The policy uses outdated assumptions and it generates a constant thread count. In fact, the Hotspot JVM still uses this policy in the production version. This research shows that the optimal number of garbage collection threads is application-speciļ¬c and conļ¬guring the optimal number of garbage collection threads yields better collection throughput than the default policy. Fifth, this dissertation designs and implements a runtime technique, which involves heuristics from dynamic collection behavior to calculate an optimal number of garbage collector threads for each collection cycle. The results show an average of 21% improvements to the garbage collection performance for DaCapo benchmarks
    corecore