14 research outputs found

    Northeastern Illinois University, Academic Catalog 2023-2024

    Get PDF
    https://neiudc.neiu.edu/catalogs/1064/thumbnail.jp

    Northeastern Illinois University, Academic Catalog 2022-2023

    Get PDF
    https://neiudc.neiu.edu/catalogs/1063/thumbnail.jp

    Northeastern Illinois University, Academic Catalog 2021-2022

    Get PDF
    https://neiudc.neiu.edu/catalogs/1062/thumbnail.jp

    Northeastern Illinois University, Academic Catalog 2020-2021

    Get PDF
    https://neiudc.neiu.edu/catalogs/1061/thumbnail.jp

    Parallel and External High Quality Graph Partitioning

    Get PDF
    Partitioning graphs into k blocks of roughly equal size such that few edges run between the blocks is a key tool for processing and analyzing large complex real-world networks. The graph partitioning problem has multiple practical applications in parallel and distributed computations, data storage, image processing, VLSI physical design and many more. Furthermore, recently, size, variety, and structural complexity of real-world networks has grown dramatically. Therefore, there is a demand for efficient graph partitioning algorithms that fully utilize computational power and memory capacity of modern machines. A popular and successful heuristic to compute a high-quality partitions of large networks in reasonable time is multi-level graph partitioning\textit{multi-level graph partitioning} approach which contracts the graph preserving its structure and then partitions it using a complex graph partitioning algorithm. Specifically, the multi-level graph partitioning approach consists of three main phases: coarsening, initial partitioning, and uncoarsening. During the coarsening phase, the graph is recursively contracted preserving its structure and properties until it is small enough to compute its initial partition during the initial partitioning phase. Afterwards, during the uncoarsening phase the partition of the contracted graph is projected onto the original graph and refined using, for example, local search. Most of the research on heuristical graph partitioning focuses on sequential algorithms or parallel algorithms in the distributed memory model. Unfortunately, previous approaches to graph partitioning are not able to process large networks and rarely take in into account several aspects of modern computational machines. Specifically, the amount of cores per chip grows each year as well as the price of RAM reduces slower than the real-world graphs grow. Since HDDs and SSDs are 50 – 400 times cheaper than RAM, external memory makes it possible to process large real-world graphs for a reasonable price. Therefore, in order to better utilize contemporary computational machines, we develop efficient multi-level graph partitioning\textit{multi-level graph partitioning} algorithms for the shared-memory and the external memory models. First, we present an approach to shared-memory parallel multi-level graph partitioning that guarantees balanced solutions, shows high speed-ups for a variety of large graphs and yields very good quality independently of the number of cores used. Important ingredients include parallel label propagation for both coarsening and uncoarsening, parallel initial partitioning, a simple yet effective approach to parallel localized local search, and fast locality preserving hash tables that effectively utilizes caches. The main idea of the parallel localized local search is that each processors refines only a small area around a random vertex reducing interactions between processors. For example, on 79 cores, our algorithms partitions a graph with more than 3 billions of edges into 16 blocks cutting 4.5% less edges than the closest competitor and being more than two times faster. Furthermore, another competitors is not able to partition this graph. We then present an approach to external memory graph partitioning that is able to partition large graphs that do not fit into RAM. Specifically, we consider the semi-external and the external memory model. In both models a data structure of size proportional to the number of edges does not fit into the RAM. The difference is that the former model assumes that a data structure of size proportional to the number of vertices fits into the RAM whereas the latter assumes the opposite. We address the graph partitioning problem in both models by adapting the size-constrained label propagation technique for the semi-external model and by developing a size-constrained clustering algorithm based on graph coloring in the external memory. Our semi-external size-constrained label propagation algorithm (or external memory clustering algorithm) can be used to compute graph clusterings and is a prerequisite for the (semi-)external graph partitioning algorithm. The algorithms are then used for both the coarsening and the uncoarsening phase of a multi-level algorithm to compute graph partitions. Our (semi-)external algorithm is able to partition and cluster huge complex networks with billions of edges on cheap commodity machines. Experiments demonstrate that the semi-external graph partitioning algorithm is scalable and can compute high quality partitions in time that is comparable to the running time of an efficient internal memory implementation. A parallelization of the algorithm in the semi-external model further reduces running times. Additionally, we develop a speed-up technique for the hypergraph partitioning algorithms. Hypergraphs are an extension of graphs that allow a single edge to connect more than two vertices. Therefore, they describe models and processes more accurately additionally allowing more possibilities for improvement. Most multi-level hypergraph partitioning algorithms perform some computations on vertices and their set of neighbors. Since these computations can be super-linear, they have a significant impact on the overall running time on large hypergraphs. Therefore, to further reduce the size of hyperedges, we develop a pin-sparsifier based on the min-hash technique that clusters vertices with similar neighborhood. Further, vertices that belong to the same cluster are substituted by one vertex, which is connected to their neighbors, therefore, reducing the size of the hypergraph. Our algorithm sparsifies a hypergraph such that the resulting graph can be partitioned significantly faster without loss in quality (or with insignificant loss). On average, KaHyPar with sparsifier performs partitioning about 1.5 times faster while preserving solution quality if hyperedges are large. All aforementioned frameworks are publicly available

    Northeastern Illinois University, Academic Catalog 2019-2020

    Get PDF
    https://neiudc.neiu.edu/catalogs/1060/thumbnail.jp

    Northeastern Illinois University, Academic Catalog 2018-2019

    Get PDF
    https://neiudc.neiu.edu/catalogs/1059/thumbnail.jp

    STAPL-RTS: A Runtime System for Massive Parallelism

    Get PDF
    Modern High Performance Computing (HPC) systems are complex, with deep memory hierarchies and increasing use of computational heterogeneity via accelerators. When developing applications for these platforms, programmers are faced with two bad choices. On one hand, they can explicitly manage machine resources, writing programs using low level primitives from multiple APIs (e.g., MPI+OpenMP), creating efficient but rigid, difficult to extend, and non-portable implementations. Alternatively, users can adopt higher level programming environments, often at the cost of lost performance. Our approach is to maintain the high level nature of the application without sacrificing performance by relying on the transfer of high level, application semantic knowledge between layers of the software stack at an appropriate level of abstraction and performing optimizations on a per-layer basis. In this dissertation, we present the STAPL Runtime System (STAPL-RTS), a runtime system built for portable performance, suitable for massively parallel machines. While the STAPL-RTS abstracts and virtualizes the underlying platform for portability, it uses information from the upper layers to perform the appropriate low level optimizations that restore the performance characteristics. We outline the fundamental ideas behind the design of the STAPL-RTS, such as the always distributed communication model and its asynchronous operations. Through appropriate code examples and benchmarks, we prove that high level information allows applications written on top of the STAPL-RTS to attain the performance of optimized, but ad hoc solutions. Using the STAPL library, we demonstrate how this information guides important decisions in the STAPL-RTS, such as multi-protocol communication coordination and request aggregation using established C++ programming idioms. Recognizing that nested parallelism is of increasing interest for both expressivity and performance, we present a parallel model that combines asynchronous, one-sided operations with isolated nested parallel sections. Previous approaches to nested parallelism targeted either static applications through the use of blocking, isolated sections, or dynamic applications by using asynchronous mechanisms (i.e., recursive task spawning) which come at the expense of isolation. We combine the flexibility of dynamic task creation with the isolation guarantees of the static models by allowing the creation of asynchronous, one-sided nested parallel sections that work in tandem with the more traditional, synchronous, collective nested parallelism. This allows selective, run-time customizable use of parallelism in an application, based on the input and the algorithm

    Optimizing work stealing algorithms with scheduling constraints

    Get PDF
    The fork-join paradigm of concurrent expression has gained popularity in conjunction with work-stealing schedulers. Random work-stealing schedulers have been shown to effectively perform dynamic load balancing, yielding provably-efficient schedules and space bounds on shared-memory architectures with uniform memory models. However, the advent of hierarchical, non-uniform multicore systems and large-scale distributed-memory architectures has reduced the efficacy of these scheduling policies. Furthermore, random work stealing schedulers do not exploit persistence within iterative, scientific applications. In this thesis, we prove several properties of work-stealing schedulers that enable online tracing of the tasks with very low overhead. We then describe new scheduling policies that use online schedule introspection to understand scheduler placement and thus improve the performance on NUMA and distributed-memory architectures. Finally, by incorporating an inclusive data effect system into fork--join programs with schedule placement knowledge, we show how we can transform a fork-join program to significantly improve locality
    corecore