701 research outputs found

    Towards Smart Hybrid Fuzzing for Smart Contracts

    Get PDF
    Smart contracts are Turing-complete programs that are executed across a blockchain network. Unlike traditional programs, once deployed they cannot be modified. As smart contracts become more popular and carry more value, they become more of an interesting target for attackers. In recent years, smart contracts suffered major exploits, costing millions of dollars, due to programming errors. As a result, a variety of tools for detecting bugs has been proposed. However, majority of these tools often yield many false positives due to over-approximation or poor code coverage due to complex path constraints. Fuzzing or fuzz testing is a popular and effective software testing technique. However, traditional fuzzers tend to be more effective towards finding shallow bugs and less effective in finding bugs that lie deeper in the execution. In this work, we present CONFUZZIUS, a hybrid fuzzer that combines evolutionary fuzzing with constraint solving in order to execute more code and find more bugs in smart contracts. Evolutionary fuzzing is used to exercise shallow parts of a smart contract, while constraint solving is used to generate inputs which satisfy complex conditions that prevent the evolutionary fuzzing from exploring deeper paths. Moreover, we use data dependency analysis to efficiently generate sequences of transactions, that create specific contract states in which bugs may be hidden. We evaluate the effectiveness of our fuzzing strategy, by comparing CONFUZZIUS with state-of-the-art symbolic execution tools and fuzzers. Our evaluation shows that our hybrid fuzzing approach produces significantly better results than state-of-the-art symbolic execution tools and fuzzers

    A Comprehensive Survey on Database Management System Fuzzing: Techniques, Taxonomy and Experimental Comparison

    Full text link
    Database Management System (DBMS) fuzzing is an automated testing technique aimed at detecting errors and vulnerabilities in DBMSs by generating, mutating, and executing test cases. It not only reduces the time and cost of manual testing but also enhances detection coverage, providing valuable assistance in developing commercial DBMSs. Existing fuzzing surveys mainly focus on general-purpose software. However, DBMSs are different from them in terms of internal structure, input/output, and test objectives, requiring specialized fuzzing strategies. Therefore, this paper focuses on DBMS fuzzing and provides a comprehensive review and comparison of the methods in this field. We first introduce the fundamental concepts. Then, we systematically define a general fuzzing procedure and decompose and categorize existing methods. Furthermore, we classify existing methods from the testing objective perspective, covering various components in DBMSs. For representative works, more detailed descriptions are provided to analyze their strengths and limitations. To objectively evaluate the performance of each method, we present an open-source DBMS fuzzing toolkit, OpenDBFuzz. Based on this toolkit, we conduct a detailed experimental comparative analysis of existing methods and finally discuss future research directions.Comment: 34 pages, 22 figure
    • …
    corecore