2,040 research outputs found

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Adversarial Training in Affective Computing and Sentiment Analysis: Recent Advances and Perspectives

    Get PDF
    Over the past few years, adversarial training has become an extremely active research topic and has been successfully applied to various Artificial Intelligence (AI) domains. As a potentially crucial technique for the development of the next generation of emotional AI systems, we herein provide a comprehensive overview of the application of adversarial training to affective computing and sentiment analysis. Various representative adversarial training algorithms are explained and discussed accordingly, aimed at tackling diverse challenges associated with emotional AI systems. Further, we highlight a range of potential future research directions. We expect that this overview will help facilitate the development of adversarial training for affective computing and sentiment analysis in both the academic and industrial communities

    Self-imitating Feedback Generation Using GAN for Computer-Assisted Pronunciation Training

    Full text link
    Self-imitating feedback is an effective and learner-friendly method for non-native learners in Computer-Assisted Pronunciation Training. Acoustic characteristics in native utterances are extracted and transplanted onto learner's own speech input, and given back to the learner as a corrective feedback. Previous works focused on speech conversion using prosodic transplantation techniques based on PSOLA algorithm. Motivated by the visual differences found in spectrograms of native and non-native speeches, we investigated applying GAN to generate self-imitating feedback by utilizing generator's ability through adversarial training. Because this mapping is highly under-constrained, we also adopt cycle consistency loss to encourage the output to preserve the global structure, which is shared by native and non-native utterances. Trained on 97,200 spectrogram images of short utterances produced by native and non-native speakers of Korean, the generator is able to successfully transform the non-native spectrogram input to a spectrogram with properties of self-imitating feedback. Furthermore, the transformed spectrogram shows segmental corrections that cannot be obtained by prosodic transplantation. Perceptual test comparing the self-imitating and correcting abilities of our method with the baseline PSOLA method shows that the generative approach with cycle consistency loss is promising
    corecore