155,222 research outputs found

    Cloud-like Management of Grid Sites 1.0 Software

    No full text
    This document presents the features implemented for the automatic deployment and dynamic provision of grid services, and for the scalable cloud-like management of grid site resources. These features, developed largely in Work Package 6 (WP6) are integrated into the StratusLab Toolkit by Work Package 4 (WP4). They involve cloud-like APIs, a service definition language, contextualization, scalable cloud frameworks, monitoring and accounting solutions. Some functionalities developed include TCloud and OCCI implementations, a library to process OVF, the Claudia framework and integration with Ganglia monitoring information

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Semantically Resolving Type Mismatches in Scientific Workflows

    No full text
    Scientists are increasingly utilizing Grids to manage large data sets and execute scientific experiments on distributed resources. Scientific workflows are used as means for modeling and enacting scientific experiments. Windows Workflow Foundation (WF) is a major component of Microsoft’s .NET technology which offers lightweight support for long-running workflows. It provides a comfortable graphical and programmatic environment for the development of extended BPEL-style workflows. WF’s visual features ease the syntactic composition of Web services into scientific workflows but do nothing to assure that information passed between services has consistent semantic types or representations or that deviant flows, errors and compensations are handled meaningfully. In this paper we introduce SAWSDL-compliant annotations for WF and use them with a semantic reasoner to guarantee semantic type correctness in scientific workflows. Examples from bioinformatics are presented

    Grid service orchestration using the Business Process Execution Language (BPEL)

    Get PDF
    Modern scientific applications often need to be distributed across grids. Increasingly applications rely on services, such as job submission, data transfer or data portal services. We refer to such services as grid services. While the invocation of grid services could be hard coded in theory, scientific users want to orchestrate service invocations more flexibly. In enterprise applications, the orchestration of web services is achieved using emerging orchestration standards, most notably the Business Process Execution Language (BPEL). We describe our experience in orchestrating scientific workflows using BPEL. We have gained this experience during an extensive case study that orchestrates grid services for the automation of a polymorph prediction application

    Security for Grid Services

    Full text link
    Grid computing is concerned with the sharing and coordinated use of diverse resources in distributed "virtual organizations." The dynamic and multi-institutional nature of these environments introduces challenging security issues that demand new technical approaches. In particular, one must deal with diverse local mechanisms, support dynamic creation of services, and enable dynamic creation of trust domains. We describe how these issues are addressed in two generations of the Globus Toolkit. First, we review the Globus Toolkit version 2 (GT2) approach; then, we describe new approaches developed to support the Globus Toolkit version 3 (GT3) implementation of the Open Grid Services Architecture, an initiative that is recasting Grid concepts within a service oriented framework based on Web services. GT3's security implementation uses Web services security mechanisms for credential exchange and other purposes, and introduces a tight least-privilege model that avoids the need for any privileged network service.Comment: 10 pages; 4 figure

    OGSA first impressions: a case study re-engineering a scientific applicationwith the open grid services architecture

    Get PDF
    We present a case study of our experience re-engineeringa scientific application using the Open Grid Services Architecture(OGSA), a new specification for developing Gridapplications using web service technologies such as WSDLand SOAP. During the last decade, UCL?s Chemistry departmenthas developed a computational approach for predictingthe crystal structures of small molecules. However,each search involves running large iterations of computationallyexpensive calculations and currently takes a fewmonths to perform. Making use of early implementationsof the OGSA specification we have wrapped the Fortranbinaries into OGSI-compliant service interfaces to exposethe existing scientific application as a set of loosely coupledweb services. We show how the OGSA implementationfacilitates the distribution of such applications across alarge network, radically improving performance of the systemthrough parallel CPU capacity, coordinated resourcemanagement and automation of the computational process.We discuss the difficulties that we encountered turning Fortranexecutables into OGSA services and delivering a robust,scalable system. One unusual aspect of our approachis the way we transfer input and output data for the Fortrancodes. Instead of employing a file transfer service wetransform the XML encoded data in the SOAP message tonative file format, where possible using XSLT stylesheets.We also discuss a computational workflow service that enablesusers to distribute and manage parts of the computationalprocess across different clusters and administrativedomains. We examine how our experience re-engineeringthe polymorph prediction application led to this approachand to what extent our efforts have succeeded
    • 

    corecore