1,179 research outputs found

    The Right (Angled) Perspective: Improving the Understanding of Road Scenes Using Boosted Inverse Perspective Mapping

    Full text link
    Many tasks performed by autonomous vehicles such as road marking detection, object tracking, and path planning are simpler in bird's-eye view. Hence, Inverse Perspective Mapping (IPM) is often applied to remove the perspective effect from a vehicle's front-facing camera and to remap its images into a 2D domain, resulting in a top-down view. Unfortunately, however, this leads to unnatural blurring and stretching of objects at further distance, due to the resolution of the camera, limiting applicability. In this paper, we present an adversarial learning approach for generating a significantly improved IPM from a single camera image in real time. The generated bird's-eye-view images contain sharper features (e.g. road markings) and a more homogeneous illumination, while (dynamic) objects are automatically removed from the scene, thus revealing the underlying road layout in an improved fashion. We demonstrate our framework using real-world data from the Oxford RobotCar Dataset and show that scene understanding tasks directly benefit from our boosted IPM approach.Comment: equal contribution of first two authors, 8 full pages, 6 figures, accepted at IV 201

    Towards End-to-End Lane Detection: an Instance Segmentation Approach

    Full text link
    Modern cars are incorporating an increasing number of driver assist features, among which automatic lane keeping. The latter allows the car to properly position itself within the road lanes, which is also crucial for any subsequent lane departure or trajectory planning decision in fully autonomous cars. Traditional lane detection methods rely on a combination of highly-specialized, hand-crafted features and heuristics, usually followed by post-processing techniques, that are computationally expensive and prone to scalability due to road scene variations. More recent approaches leverage deep learning models, trained for pixel-wise lane segmentation, even when no markings are present in the image due to their big receptive field. Despite their advantages, these methods are limited to detecting a pre-defined, fixed number of lanes, e.g. ego-lanes, and can not cope with lane changes. In this paper, we go beyond the aforementioned limitations and propose to cast the lane detection problem as an instance segmentation problem - in which each lane forms its own instance - that can be trained end-to-end. To parametrize the segmented lane instances before fitting the lane, we further propose to apply a learned perspective transformation, conditioned on the image, in contrast to a fixed "bird's-eye view" transformation. By doing so, we ensure a lane fitting which is robust against road plane changes, unlike existing approaches that rely on a fixed, pre-defined transformation. In summary, we propose a fast lane detection algorithm, running at 50 fps, which can handle a variable number of lanes and cope with lane changes. We verify our method on the tuSimple dataset and achieve competitive results

    Enhanced free space detection in multiple lanes based on single CNN with scene identification

    Full text link
    Many systems for autonomous vehicles' navigation rely on lane detection. Traditional algorithms usually estimate only the position of the lanes on the road, but an autonomous control system may also need to know if a lane marking can be crossed or not, and what portion of space inside the lane is free from obstacles, to make safer control decisions. On the other hand, free space detection algorithms only detect navigable areas, without information about lanes. State-of-the-art algorithms use CNNs for both tasks, with significant consumption of computing resources. We propose a novel approach that estimates the free space inside each lane, with a single CNN. Additionally, adding only a small requirement concerning GPU RAM, we infer the road type, that will be useful for path planning. To achieve this result, we train a multi-task CNN. Then, we further elaborate the output of the network, to extract polygons that can be effectively used in navigation control. Finally, we provide a computationally efficient implementation, based on ROS, that can be executed in real time. Our code and trained models are available online.Comment: Will appear in the 2019 IEEE Intelligent Vehicles Symposium (IV 2019
    • …
    corecore