64,789 research outputs found

    Measuring working memory load effects on electrophysiological markers of attention orienting during a simulated drive

    Get PDF
    Intersection accidents result in a significant proportion of road fatalities, and attention allocation likely plays a role. Attention allocation may depend on (limited) working memory (WM) capacity. Driving is often combined with tasks increasing WM load, consequently impairing attention orienting. This study (n = 22) investigated WM load effects on event-related potentials (ERPs) related to attention orienting. A simulated driving environment allowed continuous lane-keeping measurement. Participants were asked to orient attention covertly towards the side indicated by an arrow, and to respond only to moving cars appearing on the attended side by pressing a button. WM load was manipulated using a concurrent memory task. ERPs showed typical attentional modulation (cue: contralateral negativity, LDAP; car: N1, P1, SN and P3) under low and high load conditions. With increased WM load, lane-keeping performance improved, while dual task performance degraded (memory task: increased error rate; orienting task: increased false alarms, smaller P3). Practitioner Summary: Intersection driver-support systems aim to improve traffic safety and flow. However, in-vehicle systems induce WM load, increasing the tendency to yield. Traffic flow reduces if drivers stop at inappropriate times, reducing the effectiveness of systems. Consequently, driver-support systems could include WM load measurement during driving in the development phase

    Characterizing driving behavior using automatic visual analysis

    Full text link
    In this work, we present the problem of rash driving detection algorithm using a single wide angle camera sensor, particularly useful in the Indian context. To our knowledge this rash driving problem has not been addressed using Image processing techniques (existing works use other sensors such as accelerometer). Car Image processing literature, though rich and mature, does not address the rash driving problem. In this work-in-progress paper, we present the need to address this problem, our approach and our future plans to build a rash driving detector.Comment: 4 pages,7 figures, IBM-ICARE201

    Does Familiarity breed inattention? Why drivers crash on the roads they know best

    Get PDF
    This paper describes our research into the nature of everyday driving, with a particular emphasis on the processes that govern driver behaviour in familiar, well - practiced situations. The research examined the development and maintenance of proceduralised driving habits in a high-fidelity driving simulator by paying 29 participants to drive a simulated road regularly over three months of testing. A range of measures, including detection task performance and driving performance were collected over the course of 20 sessions. Performance from a yoked control group who experienced the same road scenarios in a single session was also measured. The data showed the development of stereotyped driving patterns and changes in what drivers noticed, indicative of in attentional blindness and “driving without awareness”. Extended practice also resulted in increased sensitivity for detecting changes to foveal road features associated with vehicle guidance and performance on an embedded vehicle detection task (detection of a specific vehicle type). The changes in attentional focus and driving performance resulting from extended practice help explain why drivers are at increased risk of crashing on roads they know well. Identifying the features of familiar roads that attract driver attention, even when they are driving without awareness, can inform new interventions and designs for safer roads. The data also provide new light on a range of previous driver behaviour research including a “Tandem Model” that includes both explicit and implicit processes involved in driving performance

    Smart driving assistance systems : designing and evaluating ecological and conventional displays

    Get PDF
    In-vehicle information systems have been shown to increase driver workload and cause distraction; both are causal factors for accidents. This simulator study evaluates the impact that two designs for a smart driving aid and scenario complexity has on workload, distraction and driving performance. Results showed that real-time delivery of smart driving information did not increase driver workload or adversely affect driver distraction, while having the effect of decreasing mean driving speed in both the simple and complex driving scenarios. Important differences were also highlighted between conventional and ecologically designed smart driving interfaces with respect to subjective workload and peripheral detection
    • 

    corecore