3,912 research outputs found

    Patient-specific modelling in orthopedics: from image to surgery

    Get PDF
    In orthopedic surgery, to decide upon intervention and how it can be optimized, surgeons usually rely on subjective analysis of medical images of the patient, obtained from computed tomography, magnetic resonance imaging, ultrasound or other techniques. Recent advancements in computational performance, image analysis and in silico modeling techniques have started to revolutionize clinical practice through the development of quantitative tools, including patient#specific models aiming at improving clinical diagnosis and surgical treatment. Anatomical and surgical landmarks as well as features extraction can be automated allowing for the creation of general or patient-specific models based on statistical shape models. Preoperative virtual planning and rapid prototyping tools allow the implementation of customized surgical solutions in real clinical environments. In the present chapter we discuss the applications of some of these techniques in orthopedics and present new computer-aided tools that can take us from image analysis to customized surgical treatment

    Navigational style influences eye movement pattern during exploration and learning of an environmental map

    Get PDF
    During navigation people may adopt three different spatial styles (i.e., Landmark, Route, and Survey). Landmark style (LS) people are able to recall familiar landmarks but cannot combine them with directional information; Route style (RS) people connect landmarks to each other using egocentric information about direction; Survey style (SS) people use a map-like representation of the environment. SS individuals generally navigate better than LS and RS people. Fifty-one college students (20 LS; 17 RS, and 14 SS) took part in the experiment. The spatial cognitive style (SCS) was assessed by means of the SCS test; participants then had to learn a schematic map of a city, and after 5 min had to recall the path depicted on it. During the learning and delayed recall phases, eye-movements were recorded. Our intent was to investigate whether there is a peculiar way to explore an environmental map related to the individual's spatial style. Results support the presence of differences in the strategy used by the three spatial styles for learning the path and its delayed recall. Specifically, LS individuals produced a greater number of fixations of short duration, while the opposite eye movement pattern characterized SS individuals. Moreover, SS individuals showed a more spread and comprehensive explorative pattern of the map, while LS individuals focused their exploration on the path and related targets. RS individuals showed a pattern of exploration at a level of proficiency between LS and SS individuals. We discuss the clinical and anatomical implications of our data

    Framework for a low-cost intra-operative image-guided neuronavigator including brain shift compensation

    Full text link
    In this paper we present a methodology to address the problem of brain tissue deformation referred to as 'brain-shift'. This deformation occurs throughout a neurosurgery intervention and strongly alters the accuracy of the neuronavigation systems used to date in clinical routine which rely solely on pre-operative patient imaging to locate the surgical target, such as a tumour or a functional area. After a general description of the framework of our intra-operative image-guided system, we describe a procedure to generate patient specific finite element meshes of the brain and propose a biomechanical model which can take into account tissue deformations and surgical procedures that modify the brain structure, like tumour or tissue resection

    Neural systems supporting navigation

    Get PDF
    Highlights: • Recent neuroimaging and electrophysiology studies have begun to shed light on the neural dynamics of navigation systems. • Computational models have advanced theories of how entorhinal grid cells and hippocampal place cells might serve navigation. • Hippocampus and entorhinal cortex provide complementary representations of routes and vectors for navigation. Much is known about how neural systems determine current spatial position and orientation in the environment. By contrast little is understood about how the brain represents future goal locations or computes the distance and direction to such goals. Recent electrophysiology, computational modelling and neuroimaging research have shed new light on how the spatial relationship to a goal may be determined and represented during navigation. This research suggests that the hippocampus may code the path to the goal while the entorhinal cortex represents the vector to the goal. It also reveals that the engagement of the hippocampus and entorhinal cortex varies across the different operational stages of navigation, such as during travel, route planning, and decision-making at waypoints
    • …
    corecore