111,654 research outputs found

    Planning Landmark Based Goal Recognition Revisited: Does Using Initial State Landmarks Make Sense?

    Full text link
    Goal recognition is an important problem in many application domains (e.g., pervasive computing, intrusion detection, computer games, etc.). In many application scenarios, it is important that goal recognition algorithms can recognize goals of an observed agent as fast as possible. However, many early approaches in the area of Plan Recognition As Planning, require quite large amounts of computation time to calculate a solution. Mainly to address this issue, recently, Pereira et al. developed an approach that is based on planning landmarks and is much more computationally efficient than previous approaches. However, the approach, as proposed by Pereira et al., also uses trivial landmarks (i.e., facts that are part of the initial state and goal description are landmarks by definition). In this paper, we show that it does not provide any benefit to use landmarks that are part of the initial state in a planning landmark based goal recognition approach. The empirical results show that omitting initial state landmarks for goal recognition improves goal recognition performance.Comment: Will be presented at KI 202

    Domain independent goal recognition

    Get PDF
    Goal recognition is generally considered to follow plan recognition. The plan recognition problem is typically dened to be that of identifying which plan in a given library of plans is being executed, given a sequence of observed actions. Once a plan has been identied, the goal of the plan can be assumed to follow. In this work, we address the problem of goal recognition directly, without assuming a plan library. Instead, we start with a domain description, just as is used for plan construction, and a sequence of action observations. The task, then, is to identify which possible goal state is the ultimate destination of the trajectory being observed. We present a formalisation of the problem and motivate its interest, before describing some simplifying assumptions we have made to arrive at a rst implementation of a goal recognition system, AUTOGRAPH. We discuss the techniques employed in AUTOGRAPH to arrive at a tractable approximation of the goal recognition problem and show results for the system we have implemented

    3D Face Tracking and Texture Fusion in the Wild

    Full text link
    We present a fully automatic approach to real-time 3D face reconstruction from monocular in-the-wild videos. With the use of a cascaded-regressor based face tracking and a 3D Morphable Face Model shape fitting, we obtain a semi-dense 3D face shape. We further use the texture information from multiple frames to build a holistic 3D face representation from the video frames. Our system is able to capture facial expressions and does not require any person-specific training. We demonstrate the robustness of our approach on the challenging 300 Videos in the Wild (300-VW) dataset. Our real-time fitting framework is available as an open source library at http://4dface.org
    • …
    corecore