10 research outputs found

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Bertsobot: gizaki-robot arteko komunikazio eta elkarrekintzarako portaerak

    Get PDF
    216 p.Bertsobot: Robot-Portaerak Gizaki-Robot Arteko Komunikazio eta ElkarrekintzanBertsotan aritzeko gaitasuna erakutsiko duen robot autonomoa garatzeada gure ikerketa-lanaren helburu behinena. Bere egitekoa, bertsoa osatzekoinstrukzioak ahoz jaso, hauek prozesatu eta ahalik eta bertsorik egokienaosatu eta kantatzea litzateke, bertsolarien oholtza gaineko adierazkortasunmaila erakutsiz gorputzarekin. Robot-bertsolariak, gizaki eta roboten artekoelkarrekintza eta komunikazioan aurrera egiteko modua jarri nahi luke, lengoaianaturala erabiliz robot-gizaki arteko bi noranzkoko komunikazioan

    Bertsobot: gizaki-robot arteko komunikazio eta elkarrekintzarako portaerak

    Get PDF
    216 p.Bertsobot: Robot-Portaerak Gizaki-Robot Arteko Komunikazio eta ElkarrekintzanBertsotan aritzeko gaitasuna erakutsiko duen robot autonomoa garatzeada gure ikerketa-lanaren helburu behinena. Bere egitekoa, bertsoa osatzekoinstrukzioak ahoz jaso, hauek prozesatu eta ahalik eta bertsorik egokienaosatu eta kantatzea litzateke, bertsolarien oholtza gaineko adierazkortasunmaila erakutsiz gorputzarekin. Robot-bertsolariak, gizaki eta roboten artekoelkarrekintza eta komunikazioan aurrera egiteko modua jarri nahi luke, lengoaianaturala erabiliz robot-gizaki arteko bi noranzkoko komunikazioan

    Visual navigation in ants

    Get PDF
    Les remarquables capacités de navigation des insectes nous prouvent à quel point ces " mini-cerveaux " peuvent produire des comportements admirablement robustes et efficaces dans des environnements complexes. En effet, être capable de naviguer de façon efficace et autonome dans un environnement parfois hostile (désert, forêt tropicale) sollicite l'intervention de nombreux processus cognitifs impliquant l'extraction, la mémorisation et le traitement de l'information spatiale préalables à une prise de décision locomotrice orientée dans l'espace. Lors de leurs excursions hors du nid, les insectes tels que les abeilles, guêpes ou fourmis, se fient à un processus d'intégration du trajet, mais également à des indices visuels qui leur permettent de mémoriser des routes et de retrouver certains sites alimentaires familiers et leur nid. L'étude des mécanismes d'intégration du trajet a fait l'objet de nombreux travaux, par contre, nos connaissances à propos de l'utilisation d'indices visuels sont beaucoup plus limitées et proviennent principalement d'études menées dans des environnements artificiellement simplifiés, dont les conclusions sont parfois difficilement transposables aux conditions naturelles. Cette thèse propose une approche intégrative, combinant 1- des études de terrains et de laboratoire conduites sur deux espèces de fourmis spécialistes de la navigation visuelle (Melophorus bagoti et Gigantiops destructor) et 2- des analyses de photos panoramiques prisent aux endroits où les fourmis naviguent qui permettent de quantifier objectivement l'information visuelle accessible à l'insecte. Les résultats convergents obtenus sur le terrain et au laboratoire permettent de montrer que, chez ces deux espèces, les fourmis ne fragmentent pas leur monde visuel en multiples objets indépendants, et donc ne mémorisent pas de 'repères visuels' ou de balises particuliers comme le ferait un être humain. En fait, l'efficacité de leur navigation émergerait de l'utilisation de paramètres visuels étendus sur l'ensemble de leur champ visuel panoramique, incluant repères proximaux comme distaux, sans les individualiser. Contre-intuitivement, de telles images panoramiques, même à basse résolution, fournissent une information spatiale précise et non ambiguë dans les environnements naturels. Plutôt qu'une focalisation sur des repères isolés, l'utilisation de vues dans leur globalité semble être plus efficace pour représenter la complexité des scènes naturelles et être mieux adaptée à la basse résolution du système visuel des insectes. Les photos panoramiques enregistrées peuvent également servir à l'élaboration de modèles navigationnels. Les prédictions de ces modèles sont ici directement comparées au comportement des fourmis, permettant ainsi de tester et d'améliorer les différentes hypothèses envisagées. Cette approche m'a conduit à la conclusion selon laquelle les fourmis utilisent leurs vues panoramiques de façons différentes suivant qu'elles se déplacent en terrain familier ou non. Par exemple, aligner son corps de manière à ce que la vue perçue reproduise au mieux l'information mémorisée est une stratégie très efficace pour naviguer le long d'une route bien connue ; mais n'est d'aucune efficacité si l'insecte se retrouve en territoire nouveau, écarté du chemin familier. Dans ces cas critiques, les fourmis semblent recourir à une seconde stratégie qui consiste à se déplacer vers les régions présentant une ligne d'horizon plus basse que celle mémorisée, ce qui généralement conduit vers le terrain familier. Afin de choisir parmi ces deux différentes stratégies, les fourmis semblent tout simplement se fier au degré de familiarisation avec le panorama perçu. Cette thèse soulève aussi la question de la nature de l'information visuelle mémorisée par les insectes. Le modèle du " snapshot " qui prédomine dans la littérature suppose que les fourmis mémorisent une séquence d'instantanés photographiques placés à différents points le long de leurs routes. A l'inverse, les résultats obtenus dans le présent travail montrent que l'information visuelle mémorisée au bout d'une route (15 mètres) modifie l'information mémorisée à l'autre extrémité de cette même route, ce qui suggère que la connaissance visuelle de l'ensemble de la route soit compactée en une seule et même représentation mémorisée. Cette hypothèse s'accorde aussi avec d'autres de nos résultats montrant que la mémoire visuelle ne s'acquiert pas instantanément, mais se développe et s'affine avec l'expérience répétée. Lorsqu'une fourmi navigue le long de sa route, ses récepteurs visuels sont stimulés de façon continue par une scène évoluant doucement et régulièrement au fur et à mesure du déplacement. Mémoriser un pattern général de stimulations, plutôt qu'une série de " snapshots " indépendants et très ressemblants les uns aux autres, constitue une hypothèse parcimonieuse. Cette hypothèse s'applique en outre particulièrement bien aux modèles en réseaux de neurones, suggérant sa pertinence biologique. Dans l'ensemble, cette thèse s'intéresse à la nature des perceptions et de la mémoire visuelle des fourmis, ainsi qu'à la manière dont elles sont intégrées et traitées afin de produire une réponse navigationnelle appropriée. Nos résultats sont aussi discutés dans le cadre de la cognition comparée. Insectes comme vertébrés ont résolu le même problème qui consiste à naviguer de façon efficace sur terre. A la lumière de la théorie de l'évolution de Darwin, il n'y a 'a priori' aucune raison de penser qu'il existe une forme de transition brutale entre les mécanismes cognitifs des différentes espèces animales. Le fossé marqué entre insectes et vertébrés au sein des sciences cognitives pourrait bien être dû à des approches différentes plutôt qu'à de vraies différences ontologiques. Historiquement, l'étude de la navigation de l'insecte a suivi une approche de type 'bottom-up' qui recherche comment des comportements apparemment complexes peuvent découler de mécanismes simples. Ces solutions parcimonieuses, comme celles explorées dans cette thèse, peuvent fournir de remarquables hypothèses de base pour expliquer la navigation chez d'autres espèces animales aux cerveaux et comportements apparemment plus complexes, contribuant ainsi à une véritable cognition comparée.Navigating efficiently in the outside world requires many cognitive abilities like extracting, memorising, and processing information. The remarkable navigational abilities of insects are an existence proof of how small brains can produce exquisitely efficient, robust behaviour in complex environments. During their foraging trips, insects, like ants or bees, are known to rely on both path integration and learnt visual cues to recapitulate a route or reach familiar places like the nest. The strategy of path integration is well understood, but much less is known about how insects acquire and use visual information. Field studies give good descriptions of visually guided routes, but our understanding of the underlying mechanisms comes mainly from simplified laboratory conditions using artificial, geometrically simple landmarks. My thesis proposes an integrative approach that combines 1- field and lab experiments on two visually guided ant species (Melophorus bagoti and Gigantiops destructor) and 2- an analysis of panoramic pictures recorded along the animal's route. The use of panoramic pictures allows an objective quantification of the visual information available to the animal. Results from both species, in the lab and the field, converged, showing that ants do not segregate their visual world into objects, such as landmarks or discrete features, as a human observers might assume. Instead, efficient navigation seems to arise from the use of cues widespread on the ants' panoramic visual field, encompassing both proximal and distal objects together. Such relatively unprocessed panoramic views, even at low resolution, provide remarkably unambiguous spatial information in natural environment. Using such a simple but efficient panoramic visual input, rather than focusing on isolated landmarks, seems an appropriate strategy to cope with the complexity of natural scenes and the poor resolution of insects' eyes. Also, panoramic pictures can serve as a basis for running analytical models of navigation. The predictions of these models can be directly compared with the actual behaviour of real ants, allowing the iterative tuning and testing of different hypotheses. This integrative approach led me to the conclusion that ants do not rely on a single navigational technique, but might switch between strategies according to whether they are on or off their familiar terrain. For example, ants can recapitulate robustly a familiar route by simply aligning their body in a way that the current view matches best their memory. However, this strategy becomes ineffective when displaced away from the familiar route. In such a case, ants appear to head instead towards the regions where the skyline appears lower than the height recorded in their memory, which generally leads them closer to a familiar location. How ants choose between strategies at a given time might be simply based on the degree of familiarity of the panoramic scene currently perceived. Finally, this thesis raises questions about the nature of ant memories. Past studies proposed that ants memorise a succession of discrete 2D 'snapshots' of their surroundings. Contrastingly, results obtained here show that knowledge from the end of a foraging route (15 m) impacts strongly on the behaviour at the beginning of the route, suggesting that the visual knowledge of a whole foraging route may be compacted into a single holistic memory. Accordingly, repetitive training on the exact same route clearly affects the ants' behaviour, suggesting that the memorised information is processed and not 'obtained at once'. While navigating along their familiar route, ants' visual system is continually stimulated by a slowly evolving scene, and learning a general pattern of stimulation rather than storing independent but very similar snapshots appears a reasonable hypothesis to explain navigation on a natural scale; such learning works remarkably well with neural networks. Nonetheless, what the precise nature of ants' visual memories is and how elaborated they are remain wide open question. Overall, my thesis tackles the nature of ants' perception and memory as well as how both are processed together to output an appropriate navigational response. These results are discussed in the light of comparative cognition. Both vertebrates and insects have resolved the same problem of navigating efficiently in the world. In light of Darwin's theory of evolution, there is no a priori reason to think that there is a clear division between cognitive mechanisms of different species. The actual gap between insect and vertebrate cognitive sciences may result more from different approaches rather than real differences. Research on insect navigation has been approached with a bottom-up philosophy, one that examines how simple mechanisms can produce seemingly complex behaviour. Such parsimonious solutions, like the ones explored in the present thesis, can provide useful baseline hypotheses for navigation in other larger-brained animals, and thus contribute to a more truly comparative cognition

    Artificial general intelligence: Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

    Get PDF
    Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI – to create broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have focused on what has been called narrow AI – the production of AI systems displaying intelligence regarding specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the necessity – and feasibility – of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of human level intelligence and more broadly artificial general intelligence

    Navigational Path Analysis of Mobile Robot in Various Environments

    Get PDF
    This dissertation describes work in the area of an autonomous mobile robot. The objective is navigation of mobile robot in a real world dynamic environment avoiding structured and unstructured obstacles either they are static or dynamic. The shapes and position of obstacles are not known to robot prior to navigation. The mobile robot has sensory recognition of specific objects in the environments. This sensory-information provides local information of robots immediate surroundings to its controllers. The information is dealt intelligently by the robot to reach the global objective (the target). Navigational paths as well as time taken during navigation by the mobile robot can be expressed as an optimisation problem and thus can be analyzed and solved using AI techniques. The optimisation of path as well as time taken is based on the kinematic stability and the intelligence of the robot controller. A successful way of structuring the navigation task deals with the issues of individual behaviour design and action coordination of the behaviours. The navigation objective is addressed using fuzzy logic, neural network, adaptive neuro-fuzzy inference system and different other AI technique.The research also addresses distributed autonomous systems using multiple robot

    Robot environment learning with a mixed-linear probabilistic state-space model

    Get PDF
    This thesis proposes the use of a probabilistic state-space model with mixed-linear dynamics for learning to predict a robot's experiences. It is motivated by a desire to bridge the gap between traditional models with predefined objective semantics on the one hand, and the biologically-inspired "black box" behavioural paradigm on the other. A novel EM-type algorithm for the model is presented, which is less compuationally demanding than the Monte Carlo techniques developed for use in (for example) visual applications. The algorithm's E-step is slightly approximative, but an extension is described which would in principle make it asymptotically correct. Investigation using synthetically sampled data shows that the uncorrected E-step can any case make correct inferences about quite complicated systems. Results collected from two simulated mobile robot environments support the claim that mixed-linear models can capture both discontinuous and continuous structure in world in an intuitively natural manner; while they proved to perform only slightly better than simpler autoregressive hidden Markov models on these simple tasks, it is possible to claim tentatively that they might scale more effectively to environments in which trends over time played a larger role. Bayesian confidence regions—easily by mixed-linear model— proved be an effective guard for preventing it from making over-confident predictions outside its area of competence. A section on future extensions discusses how the model's easy invertibility could be harnessed to the ultimate aim of choosing actions, from a continuous space of possibilities, which maximise the robot's expected payoff over several steps into the futur

    Intelligent systems: towards a new synthetic agenda

    Get PDF

    The design and intelligent control of an autonomous mobile robot

    Get PDF
    This thesis presents an investigation into the problems of exploration, map building and collision free navigation for intelligent autonomous mobile robots. The project began with an extensive review of currently available literature in the field of mobile robot research, which included intelligent control techniques and their application. It became clear that there was scope for further development with regard to map building and exploration in new and unstructured environments. Animals have an innate propensity to exhibit such abilities, and so the analogous use of artificial neural networks instead of actual neural systems was examined for use as a method of robot mapping. A simulated behaviour based mobile robot was used in conjunction with a growing cell structure neural network to map out new environments. When using the direct application of this algorithm, topological irregularities were observed to be the direct result of correlations within the input data stream. A modification to this basic system was shown to correct the problem, but further developments would be required to produce a generic solution. The mapping algorithms gained through this approach, although more similar to biological systems, are computationally inefficient in comparison to the methods which were subsequently developed. A novel mapping method was proposed based on the robot creating new location vectors, or nodes, when it exceeded a distance threshold from its mapped area. Network parameters were developed to monitor the state of growth of the network and aid the robot search process. In simulation, the combination of the novel mapping and search process were shown to be able to construct maps which could be subsequently used for collision free navigation. To develop greater insights into the control problem and to validate the simulation work the control structures were ported to a prototype mobile robot. The mobile robot was of circular construction, with a synchro-drive wheel configuration, and was equipped with eight ultrasonic distance sensors and an odometric positioning system. It was self-sufficient, incorporating all its power and computational resources. The experiments observed the effects of odometric drift and demonstrated methods of re-correction which were shown to be effective. Both the novel mapping method, and a new algorithm based on an exhaustive mesh search, were shown to be able to explore different environments and subsequently achieve collision free navigation. This was shown in all cases by monitoring the estimates in the positional error which remained within fixed bounds
    corecore