323 research outputs found

    A reliability-based particle filter for humanoid robot self-localization in Robocup Standard Platform League

    Get PDF
    This paper deals with the problem of humanoid robot localization and proposes a new method for position estimation that has been developed for the RoboCup Standard Platform League environment. Firstly, a complete vision system has been implemented in the Nao robot platform that enables the detection of relevant field markers. The detection of field markers provides some estimation of distances for the current robot position. To reduce errors in these distance measurements, extrinsic and intrinsic camera calibration procedures have been developed and described. To validate the localization algorithm, experiments covering many of the typical situations that arise during RoboCup games have been developed: ranging from degradation in position estimation to total loss of position (due to falls, ‘kidnapped robot’, or penalization). The self-localization method developed is based on the classical particle filter algorithm. The main contribution of this work is a new particle selection strategy. Our approach reduces the CPU computing time required for each iteration and so eases the limited resource availability problem that is common in robot platforms such as Nao. The experimental results show the quality of the new algorithm in terms of localization and CPU time consumption.This work has been supported by the Spanish Science and Innovation Ministry (MICINN) under the CICYT project COBAMI: DPI2011-28507-C02-01/02. The responsibility for the content remains with the authors.Munera Sánchez, E.; Muñoz Alcobendas, M.; Blanes Noguera, F.; Benet Gilabert, G.; SimĂł Ten, JE. (2013). A reliability-based particle filter for humanoid robot self-localization in Robocup Standard Platform League. Sensors. 13(11):14954-14983. https://doi.org/10.3390/s131114954S1495414983131

    Visual Localisation of Quadruped Walking Robots

    Get PDF

    Robot Collaboration for Simultaneous Map Building and Localization

    Get PDF

    The SocRob Project: Soccer Robots or Society of Robots

    Get PDF

    Robot Localization Using Visual Image Mapping

    Get PDF
    One critical step in providing the Air Force the capability to explore unknown environments is for an autonomous agent to be able to determine its location. The calculation of the robot\u27s pose is an optimization problem making use of the robot\u27s internal navigation sensors and data fusion of range sensor readings to find the most likely pose. This data fusion process requires the simultaneous generation of a map which the autonomous vehicle can then use to avoid obstacles, communicate with other agents in the same environment, and locate targets. Our solution entails mounting a Class 1 laser to an ERS-7 AIBO. The laser projects a horizontal line on obstacles in the AIBO camera\u27s field of view. Range readings are determined by capturing and processing multiple image frames, resolving the laser line to the horizon, and extract distance information to each obstacle. This range data is then used in conjunction with mapping a localization software to accurately navigate the AIBO
    • …
    corecore