11 research outputs found

    PLANETARY CARTOGRAPHY AND MAPPING: WHERE WE ARE TODAY, AND WHERE WE ARE HEADING FOR?

    Get PDF

    Remote sensing of lunar surface

    Get PDF
    59-78Remote Sensing of Lunar Surface has provided its Topographic, Geo-chemical composition, Radiation dose and Mineralogical information of Lunar Surface. The Indian Space Research Organisation's (ISRO) Chandrayaan-1 and National Aeronautical Space Administration's (NASA) Lunar Reconnaissance Orbiter (LRO) have different type of sensors for measuring and mapping of the entire Lunar Surface. For the Mapping of Topographical features Chandrayaan-1 has Terrain Mapping Camera (TMC), while Lunar Reconnaissance Orbiter (LRO) has Lunar Reconnaissance Orbiter Camera (LROC).For determination of Chemical and Mineralogical features Chandrayaan-1 has Lunar Laser Ranging Instrument (LLRI) and Lunar Reconnaissance Orbiter (LRO) has Lunar Orbiter Laser Altimeter (LOLA) instrument. The mapping of Geo-chemicals has been done by Chandryaan-1 X-ray spectrometer (C1XS) and High Energy X-ray Spectrometer (HEX) onboard Chandrayaan-1 and Lunar Exploration Neutron Detector (LEND) onboard Lunar Reconnaissance Orbiter (LRO). The knowledge of mineral composition has been used for getting information about the evolution history of Moon. For this purpose the Chandrayaan-1 has Hyper Spectral Imager (HySI), near Infrared Spectrometer (SIR-2) and Moon Mineralogical Mapper (M3) and Lunar Reconnaissance Orbiter (LRO) has Lyman alpha Mapping Project (LAMP).Radiation dose measurement is also important for designing the sensors and future manned missions. Therefore, Chandrayaan-1 has Radiation Dose Monitor (RADOM) and Lunar Reconnaissance Orbiter (LRO) has Cosmic Ray Telescope for determination of the Effect of Radiation (CRaTER). For the measurement of Backscattered or Energetic Neutral Atoms (ENAs) and predetermination of surface for future landing missions Chandrayaan-1 has Subatomic Reflection Analyser (SARA) and Moon Impactor Probe respectively along with the other payloads. The LRO has the Diviner Lunar Radiometer Experiment (DLRE) for measuring the temperature fluctuations, rough terrain and other landing hazards similar to Moon Impactor Probe (MIP) onboard Chandrayaan-1. The active microwave sensors Miniature Synthetic Aperture Radar (Mini-SAR) onboard Chandrayaan-1 and Mini-RF onboard Lunar Reconnaissance Orbiter (LRO) have been used for identifying the traces of water in form of ice in the permanently shadowed regions at the poles of the Moon. The Mini-SAR instrument onboard Chandrayaan-1 has a primary antenna which transmits single right circularly polarized signal and receives the dual polarized (Left and Right) signal. While the antenna of Miniature Radio Frequency Radar (Mini-RF) onboard LRO transmits either left or right circularly polarized signal and then receives horizontal and vertical polarized signals.The observations based on Circular Polarization Ratio (CPR>1) as well as m-chi (0 to 0.2) parameters and backscattering coefficient less than -15dB have helped in determining the presence of water-ice, differentiate the water-ice from rock abundances, surface and sub-surface characteristics for identifying the Possible landing sites for the future lunar missions. Quantification of water-ice in the Hermite-A crater gives the confirmation that only Circular Polarization Ratio (CPR) is not sufficient for identifying water-ice. The other parameters like m-chi and backscattering coefficient values must be taken into the consideration for distinguishing between water-ice and rocky terrains. The Dielectric properties of Terrestrial Analogue of Lunar Soil (TALS) have been studied and compared with the Apollo samples at different microwave frequencies. The study of variations in complex permittivity of TALS having different percentages of water has been done at different temperatures. The variable Permittivity mapping of lunar surface has been done by using datasets of Microwave Radiometer (MRM) onboard Chang'e-1 and Diviner onboard LRO. The success of Chandrayaan-1 and Lunar Reconnaissance Orbiter (LRO) has greatly helped Scientist to go for further investigations in the areas of water-ice using microwave sensors for future missions for exploration the Moon

    PLANETARY3D: A PHOTOGRAMMETRIC TOOL FOR 3D TOPOGRAPHIC MAPPING OF PLANETARY BODIES

    Get PDF
    Planetary remote sensing images are the primary datasets for high-resolution topographic mapping and modeling of the planetary surfaces. However, unlike the mapping satellites for Earth observations, cameras onboard the planetary satellites generally present special imaging geometries and configurations, which makes the stereo photogrammetric process difficult and requires a large number of manual interactions. At the Hong Kong Polytechnic University, we developed a unified photogrammetric software system, namely Planetary3D, for 3D topographic mapping modeling of various planetary bodies using images collected by various sensors. Planetary3D consists of three modules, including: (1) the pre-processing module to deliver standardized image products, (2) the bundle adjustment module to alleviate the inconsistencies between the images and possibly the reference frame, and (3) the dense image matching module to create pixel-wise image matches and produce high quality topographic models. Examples of using three changeling datasets, including the MRO CTX, MRO HiRISE and Chang’E-2 images, have revealed that the automatic pipeline of Planetary3D can produce high-quality digital elevation models (DEMs) with favorable performances. Notably, the notorious jitter effects visible on HiRISE images can be effectively removed and good consistencies with the reference DEMs are found for the test datasets by the Planetary3D pipeline

    Forty-first Lunar and Planetary Science Conference

    Get PDF
    Special sessions were: A New Moon: Lunar Reconnaissance Orbiter Results ; Water in the Solar System: Incorporation into Primitive Bodies and Evolution ; A New Moon: LCROSS, Chandrayaan, and Chang-E-1 ; Water in the Solar System: Moon ; A New Moon: Spectral Constraints on Lunar Crustal Composition ; Characterizing Near-Earth Objects ; A New Moon: Lunar Volcanism and Impact. This CD-ROM contains the contents, program, abstracts, and author indexes for the 41st Lunar and Planetary Science Conference.by Lunar and Planetary Institute, NASA Johnson Space Centerconference co-chairs, Stephen Mackwell, Lunar and Planetary Institute [and] Eileen Stansbery, NASA Johnson Space Center.PARTIAL CONTENTS: Roughness and Radar Polarimetry of Lunar Polar Craters: Testing for Ice Deposits / B.J. Thomson, P.D. Spudis, D.B.J. Bussey, L. Carter, R.L. Kirk, C. Neish, G. Patterson, R.K. Raney, H. Winters, and the Mini-RF Team--Formation of Jupiter's Atmosphere from a Supernova-Contaminated Molecular Cloud / H.B. Throop--Ancient Lunar Dynamo: Absence of Evidence is Not the Evidence of Absence / S.M. Tikoo, B.P. Weiss, J. Buz, I. Garrick-Bethell, T.L. Grove, and J. Gattaccaea--Dark Dunes in Ka'u Desert (Hawaii) as Terrestrial Analogs to Dark Dunes on Mars / D. Tirsch, R.A. Craddock, and R. Jaumann--Mars Ice Condensation and Density Orbiter / T.N. Titus, T. Prettyman, A. Brown, T.I. Michaels, and A. Colaprete--The Atacama Desert Cave Shredder: A Case for Conduction Thermodynamics / T.N. Titus, J.J. Wynne, D. Ruby, and N. Cabrol

    Spin-scanning Cameras for Planetary Exploration: Imager Analysis and Simulation

    Get PDF
    In this thesis, a novel approach to spaceborne imaging is investigated, building upon the scan imaging technique in which camera motion is used to construct an image. This thesis investigates its use with wide-angle (≄90° field of view) optics mounted on spin stabilised probes for large-coverage imaging of planetary environments, and focusses on two instruments. Firstly, a descent camera concept for a planetary penetrator. The imaging geometry of the instrument is analysed. Image resolution is highest at the penetrator’s nadir and lowest at the horizon, whilst any point on the surface is imaged with highest possible resolution when the camera’s altitude is equal to that point’s radius from nadir. Image simulation is used to demonstrate the camera’s images and investigate analysis techniques. A study of stereophotogrammetric measurement of surface topography using pairs of descent images is conducted. Measurement accuracies and optimum stereo geometries are presented. Secondly, the thesis investigates the EnVisS (Entire Visible Sky) instrument, under development for the Comet Interceptor mission. The camera’s imaging geometry, coverage and exposure times are calculated, and used to model the expected signal and noise in EnVisS observations. It is found that the camera’s images will suffer from low signal, and four methods for mitigating this – binning, coaddition, time-delay integration and repeat sampling – are investigated and described. Use of these methods will be essential if images of sufficient signal are to be acquired, particularly for conducting polarimetry, the performance of which is modelled using Monte Carlo simulation. Methods of simulating planetary cameras’ images are developed to facilitate the study of both cameras. These methods enable the accurate simulation of planetary surfaces and cometary atmospheres, are based on Python libraries commonly used in planetary science, and are intended to be readily modified and expanded for facilitating the study of a variety of planetary cameras

    Evaluation of topography, slopes, illumination and surface roughness of landing sites near the lunar south pole using laser altimetry from the lunar reconnaissance orbiter

    Get PDF
    Diese Arbeit beschĂ€ftigt sich mit der Auswertung aktueller, wissenschaftlicher Messungen des Lunar Reconnaissance Orbiter (LRO), einer Mondsonde der National Aeronautics and Space Administration (NASA). Seit Juni 2009 vermisst LRO die MondoberflĂ€che kontinuierlich und in höchster PrĂ€zision. Diese Messungen, speziell die des LRO Lunar Orbiter Laser Altimeter (LOLA), sind in dieser Arbeit detailliert untersucht und ausgewertet worden, aber auch Bilddaten der LRO Lunar Reconnaissance Orbiter Camera (LROC), genauer der Narrow Angle Camera (NAC), wurden in die Auswertung mit einbezogen. Digitale GelĂ€ndemodelle, die aus Laserdaten gerechnet wurden, weisen typischerweise Artefakte auf, die neben Ausreißern eindeutig auf Lageungenauigkeiten zwischen Laserspuren zurĂŒckzufĂŒhren sind. Dominant sind diese Artefakte insbesondere bei hoch aufgelösten GelĂ€ndemodellen. Zur Beseitigung von relativen Lageungenauigkeiten zwischen einzelnen Laserspuren ist in dieser Arbeit ein Algortihmus zur Co-Registrierung entwickelt worden. Dazu wird ein NAC GelĂ€ndemodell mit allen LOLA Laserspuren, die das Gebiet kreuzen co-registriert, was zu individuellen Translationsparametern fĂŒr jede einzelne Laserspur fĂŒhrt. Standardabweichungen der Höhenresiduen zwischen NAC und LOLA nach der Co-Registrierung von bis ~20 cm werden dabei erreicht. Auf Grundlage des resultierenden, ausgeglichenen GelĂ€ndemodells werden sekundĂ€re Datenprodukte wie Hangneigungs- und Rauhigkeitskarten erstellt. Zwei unterschiedliche Methoden zur Ableitung von Rauhigkeitskarten aus Laserdaten werden vorgestellt, wobei eine Methode sich auf Standardabweichungen von Regressionsebenen und die andere sich auf die Analyse von Laserpulsbreiten stĂŒtzt. WĂ€hrend die erste Methode zuverlĂ€ssige Werte auf globaler sowie lokaler Ebene liefert, zeigt letztere Methode verwertbare Ergebnisse auf globaler Ebene wobei die Ergebnisse auf lokalen, hoch aufgelösten Gebieten sorgfĂ€ltiger analysiert werden mĂŒssen. Das ist auf zahlreiche Faktoren, wie Rauschen und thermaler Einfluss, zurĂŒckzufĂŒhren, die in dieser Arbeit angesprochen werden, jedoch nicht abschließend behandelt werden konnten. Eine detaillierte Beschreibung der BeleuchtungsverhĂ€ltnisse des lunaren SĂŒdpols mit besonderer Betrachtung dreier potentieller LandeplĂ€tze, wird vorgestellt. Zwei dieser LandeplĂ€tze befinden sich auf dem Rand des Shackleton-Kraters und eine weitere auf einer HĂŒgelkette, die den de Gerlache-Krater und den Shackleton-Krater verbindet, im weiteren Connecting Ridge genannt. BeleuchtungsverhĂ€ltnisse wurden auf Bodenniveau aber auch 2 m und 10 m ĂŒber der MondoberflĂ€che gerechnet und werden ĂŒber einen Zeitraum von 1 Jahr sowie 19 Jahre untersucht. Der Zeitraum von 19 Jahren wurde untersucht, um den lunaren PrĂ€zessionszyklus von 18.6 Jahren abzudecken. Die Berechnungen ĂŒber einen Zeitraum von 1 Jahr wurden angestellt, um mit Ergebnissen von vorherigen Veröffentlichungen verglichen werden zu können. Im Hinblick auf lange Beleuchtungsphasen, z.B. 10 m ĂŒber der MondoberflĂ€che, stellt sich Connecting Ridge mit einer totalen Beleuchtung von bis zu 95.66% ĂŒber einen Zeitraum von 19 Jahren als idealer Landeplatz heraus. Kontinuierliche Beleuchtungsperioden von bis zu 262.42 Tage, bei einer maximalen Dunkelperiode von nur 3.17 Tage, machen diesen Landeplatz fĂŒr Lander- oder Rovermissionen mit Solarpanelen Ă€ußerst attraktiv. Auch die Sichtbarkeit von den LandeplĂ€tzen zu zehn European Space Agency (ESA) Radiostationen auf der Erde werden untersucht, wodurch gezeigt werden konnte, dass selbst fĂŒr LandeplĂ€tze auf der RĂŒckseite des Mondes nur relativ kurze Perioden (ca. 2 Wochen) in Funklöchern ĂŒberbrĂŒckt werden mĂŒssen.This work deals with the evaluation of current scientific data collected by National Aeronautics and Space Administration (NASA)’s Lunar Reconnaissance Orbiter (LRO) mission. Since June 2009 LRO has been continuously surveying the lunar surface with high precision. The main focus is placed on data retrieved by the LRO Lunar Orbiter Laser Altimeter (LOLA) but also images acquired by the LRO Lunar Reconnaissance Orbiter Camera (LROC), more specifically the Narrow Angle Camera (NAC), will be discussed briefly. Digital Terrain Models (DTMs) derived from laser data typically show artifacts, which in addition to common outliers, are clearly induced by positional inaccuracies between tracks. These artifacts, especially in high resolution DTMs, become a prominent feature. A co-registration algorithm is introduced, which was developed in the course of this work and corrects the relative position between single laser tracks. For this purpose a NAC DTM is co-registered with all intersecting LOLA tracks allowing for a precise adjustment of each individual laser track position. A standard deviation of ~20 cm in height residuals between LOLA and NAC profiles can be attained with this co-registration technique. Secondary data products such as slope and roughness maps are created on the basis of the resulting, adjusted LOLA DTM. Two independent methods for roughness calculations based on laser data are introduced, one method is based on standard deviation values of plane fits and the other method is based on the analysis of the laser pulse width. While the former method delivers reliable results on a local and global scale, the latter shows reasonable results on a global scale but needs to be carefully analyzed on a local, high-resolution scale. Various effects on the laser pulse measurement such as noise and thermal influence are addressed in this work but are not further investigated. A detailed description of illumination conditions at the lunar south pole is given, in particular of three possible landing sites. Two of these sites are located on the rim of Shackleton Crater and the third lies on a ridge connecting the de Gerlache and Shackleton craters, referred to as the Connecting Ridge. Illumination conditions at surface level, 2 m and 10 m above ground were simulated for a 1-year and a 19-year period. The 19-year time period was chosen to cover the lunar precessional cycle of 18.6 years and the 1-year period was chosen in accordance with previous studies. Connecting Ridge was found to be an ideal site concerning long illumination periods. For example, total illumination of up to 95.66% during the considered 19-year period is found 10 m above ground. This particular landing site has up to 262.42 continuous days of sunlight with a maximum of only 3.17 days of continuous darkness, making it an attractive location for future landing devices relying on solar power. Visibility of Earth from each considered landing site to ten European Space Agency (ESA) tracking stations was simulated, proving that even landing sites on the farside of the Moon only have to overcome short periods (about 2 weeks) in radio dead zones

    Annual meeting of the Lunar Exploration Analysis Group : October 14-16, 2013, Laurel, Maryland

    Get PDF
    Data from an array of international lunar missions have significantly changed our understanding of many lunar processes and revealed the complex nature of the lunar poles and the distribution of volatiles on the surface. While answering many questions, those data have raised many more. The focus of the 2013 LEAG Annual Meeting will be developing an understanding of the scientific questions, measurement techniques, and options for exploring the Moon with Discovery-class missions or with payloads flown on international or commercial missions.institutional support NASA Lunar Exploration Analysis Group ... [and others] ; conveners, Jeffrey Plescia ... [and others] ; scientific organizing committee, Jeffrey Plescia ... [and others]PARTIAL CONTENTS: Overview of Results from the Lunar Reconnaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) Instrument / R.Z. Sagdeev, W.V. Boynton, G. Chin, M. Litvak, T.A. Livengood, T.P. McClanahan, I.G. Mitrofanov, and A.B. Sanin--Lunar Polar ISRU as a Stepping Stone for Human Exploration / G.B. Sanders--Dose Spectra from Energetic Particles and Neutrons (DoSEN) / S. Smith, N.A. Schwadron, C. Bancroft, P. Bloser, J. Legere, J. Ryan, H. Spence, J. Mazur, and C. Zeitlin

    Fortieth Lunar and Planetary Science Conference

    Get PDF
    Special sessions on Lunar Missions, Messenger at Mercury, and Icy Satellites of Jupiter and Saturn were held. This CD-ROM contains the contents, program, abstracts, and author indexes for the 40th Lunar and Planetary Science Conference.sponsored by Lunar and Planetary Institute, NASA Johnson Space Centerconference co-chairs, Stephen J. Mackwell, Eileen StansberyPARTIAL CONTENTS: Equilibrated Aggregates in Cometary IDPs: Insights into the Crystallization Process in Protoplanetary Disks / L.P. Keller and S. Messenger--The Impact Crater Jebel Waqf as Suwwan in Jordan: Effects of Target Heterogeneity and Impact Obliquity on Central Uplift Formation / T. Kenkmann, W.U. Reimold, M. Khirfan, E. Salameh, K. Konsul, T. Lehmann, and H. Khoury--The Dispersal of Pyroclasts from Apollinaris Patera, Mars / L. Kerber, J.W. Head, J.B. Madeleine, F. Forget, and L. Wilson--The Age of the Medusae Fossae Formation: Reassessment Using Lava Flow Cast and Mold Contacts / L. Kerber and J.W. Head III--Possible Liquid-like Water Produced Seepage Features on Mars / A. Kereszturi, A. Horváth, A. Sik, A. Kuti, Sz. Bérczi, T. Gánti, T. Pócs, and E. Szathmáry
    corecore