2,051 research outputs found

    ESTIMATION AND MODELING OF FOREST ATTRIBUTES ACROSS LARGE SPATIAL SCALES USING BIOMEBGC, HIGH-RESOLUTION IMAGERY, LIDAR DATA, AND INVENTORY DATA

    Get PDF
    The accurate estimation of forest attributes at many different spatial scales is a critical problem. Forest landowners may be interested in estimating timber volume, forest biomass, and forest structure to determine their forest\u27s condition and value. Counties and states may be interested to learn about their forests to develop sustainable management plans and policies related to forests, wildlife, and climate change. Countries and consortiums of countries need information about their forests to set global and national targets to deal with issues of climate change and deforestation as well as to set national targets and understand the state of their forest at a given point in time. This dissertation approaches these questions from two perspectives. The first perspective uses the process model Biome-BGC paired with inventory and remote sensing data to make inferences about a current forest state given known climate and site variables. Using a model of this type, future climate data can be used to make predictions about future forest states as well. An example of this work applied to a forest in northern California is presented. The second perspective of estimating forest attributes uses high resolution aerial imagery paired with light detection and ranging (LiDAR) remote sensing data to develop statistical estimates of forest structure. Two approaches within this perspective are presented: a pixel based approach and an object based approach. Both approaches can serve as the platform on which models (either empirical growth and yield models or process models) can be run to generate inferences about future forest state and current forest biogeochemical cycling

    Remote sensing of opium poppy cultivation in Afghanistan

    Get PDF
    This work investigates differences in the survey methodologies of the monitoring programmes of the United Nations Office on Drugs and Crime (UNODC) and the US Government that lead to discrepancies in quantitative information about poppy cultivation. The aim of the research is to improve annual estimates of opium production. Scientific trials conducted for the UK Government (2006–2009) revealed differences between the two surveys that could account for the inconsistency in results. These related to the image interpretation of poppy from very high resolution satellite imagery, the mapping of the total area of agriculture and stratification using full coverage medium resolution imagery. MODIS time-series profiles of Normalised Difference Vegetation Index (NDVI), used to monitor Afghanistan’s agricultural system, revealed significant variation in the agriculture area between years caused by land management practices and expansion into new areas. Image interpretation of crops was investigated as a source of bias within the sample using increasing levels of generalisation in sample interpretations. Automatic segmentation and object-based classification were tested as methods to improve consistency. Generalisation was found to bias final estimates of poppy up to 14%. Segments were consistent with manual field delineations but object-based classification caused a systematic labelling error. The findings show differences in survey estimates based on interpretation keys and the resolution of imagery, which is compounded in areas of marginal agriculture or years with poor crop establishment. Stratified and unstratified poppy cultivation estimates were made using buffered and unbuffered agricultural masks at resolutions of 20, 30 and 60 m, resampled from SPOT-5 10 m data. The number of strata (1, 4, 8, 13, 23, 40) and sample fraction (0.2 to 2%) used in the estimate were also investigated. Decreasing the resolution of the imagery and buffering increased unstratified estimates. Stratified estimates were more robust to changes in sample size and distribution. The mapping of the agricultural area explained differences in cultivation figures of the opium monitoring programmes in Afghanistan. Supporting methods for yield estimation for opium poppy were investigated at field sites in the UK in 2004, 2005 and 2010. Good empirical relationships were found between NDVI and the yield indicators of mature capsule volume and dry capsule yield. The results suggested a generalised relationship across all sampled fields and years (R2 >0.70) during the 3–4 week period including poppy flowering. The application of this approach in Afghanistan was investigated using VHR satellite imagery and yield data from the UNODC’s annual survey. Initial results indicated the potential of improved yield estimates using a smaller and targeted collection of ground observations as an alternative to random sampling. The recommendations for poppy cultivation surveys are: the use of image-based stratification for improved precision and reducing differences in the agricultural mask, and use of automatic segmentation for improved consistency in field delineation of poppy crops. The findings have wider implications for improved confidence in statistical estimates from remote sensing methodologies

    Mapping and Monitoring Forest Cover

    Get PDF
    This book is a compilation of six papers that provide some valuable information about mapping and monitoring forest cover using remotely sensed imagery. Examples include mapping large areas of forest, evaluating forest change over time, combining remotely sensed imagery with ground inventory information, and mapping forest characteristics from very high spatial resolution data. Together, these results demonstrate effective techniques for effectively learning more about our very important forest resources

    Remote Sensing Applications to Support Sustainable Natural Resource Management

    Get PDF
    The original design of this dissertation project was relatively simple and straightforward. It was intended to produce one single, dynamic, classification and mapping system for existing vegetation that could rely on commonly available inventory and remote sensing data. This classification and mapping system was intended to provide the analytical basis for resource planning and management. The problems encountered during the first phase of the original design transformed this project into an extensive analysis of the nature of these problems and a decade-long remote sensing applications development endeavor. What evolved from this applications development process is a portion of what has become a system of systems to inform and support natural resource management. This dissertation presents the progression of work that sequentially developed a suite of remote sensing applications designed to address different aspects of the problems encountered with the original project. These remote sensing applications feature different resource issues, and resource components and are presented in separate chapters. Chapter one provides an introduction and description of the project evolution and chapter six provides a summary of the work and concluding discussion. Chapters two through five describe remote sensing applications that represent related, yet independent studies that are presented essentially as previously published. Chapter two evaluates different approaches to classifying and mapping fire severity using multi-temporal Landsat TM data. The recommended method currently represents the analytical basis for fire severity data produced by the USDA Forest Service and the US Geological Survey. Chapter three also uses multi-temporal Landsat data and compares quantitative, remote-sensing-based change detection methods for forest management related canopy change. The recommended method has been widely applied for a variety of forest health and disaster response applications. Chapter four presents a method for multi-source and multi-classifier regional land cover mapping that is currently incorporated in the USDA Forest Service Existing Vegetation Classification and Mapping Technical Guide. Chapter five presents a study using nearest neighbor imputation methods to generate geospatial data surfaces for simulation modeling of vegetation through time and space. While these results have not yet been successful enough to support widespread adoption and implementation, it is possible that these general methods can be adapted to perform adequately for simulation modeling data needs

    3D Remote Sensing Applications in Forest Ecology: Composition, Structure and Function

    Get PDF
    Dear Colleagues, The composition, structure and function of forest ecosystems are the key features characterizing their ecological properties, and can thus be crucially shaped and changed by various biotic and abiotic factors on multiple spatial scales. The magnitude and extent of these changes in recent decades calls for enhanced mitigation and adaption measures. Remote sensing data and methods are the main complementary sources of up-to-date synoptic and objective information of forest ecology. Due to the inherent 3D nature of forest ecosystems, the analysis of 3D sources of remote sensing data is considered to be most appropriate for recreating the forest’s compositional, structural and functional dynamics. In this Special Issue of Forests, we published a set of state-of-the-art scientific works including experimental studies, methodological developments and model validations, all dealing with the general topic of 3D remote sensing-assisted applications in forest ecology. We showed applications in forest ecology from a broad collection of method and sensor combinations, including fusion schemes. All in all, the studies and their focuses are as broad as a forest’s ecology or the field of remote sensing and, thus, reflect the very diverse usages and directions toward which future research and practice will be directed

    Object-Based Supervised Machine Learning Regional-Scale Land-Cover Classification Using High Resolution Remotely Sensed Data

    Get PDF
    High spatial resolution (HR) (1m – 5m) remotely sensed data in conjunction with supervised machine learning classification are commonly used to construct land-cover classifications. Despite the increasing availability of HR data, most studies investigating HR remotely sensed data and associated classification methods employ relatively small study areas. This work therefore drew on a 2,609 km2, regional-scale study in northeastern West Virginia, USA, to investigates a number of core aspects of HR land-cover supervised classification using machine learning. Issues explored include training sample selection, cross-validation parameter tuning, the choice of machine learning algorithm, training sample set size, and feature selection. A geographic object-based image analysis (GEOBIA) approach was used. The data comprised National Agricultural Imagery Program (NAIP) orthoimagery and LIDAR-derived rasters. Stratified-statistical-based training sampling methods were found to generate higher classification accuracies than deliberative-based sampling. Subset-based sampling, in which training data is collected from a small geographic subset area within the study site, did not notably decrease the classification accuracy. For the five machine learning algorithms investigated, support vector machines (SVM), random forests (RF), k-nearest neighbors (k-NN), single-layer perceptron neural networks (NEU), and learning vector quantization (LVQ), increasing the size of the training set typically improved the overall accuracy of the classification. However, RF was consistently more accurate than the other four machine learning algorithms, even when trained from a relatively small training sample set. Recursive feature elimination (RFE), which can be used to reduce the dimensionality of a training set, was found to increase the overall accuracy of both SVM and NEU classification, however the improvement in overall accuracy diminished as sample size increased. RFE resulted in only a small improvement the overall accuracy of RF classification, indicating that RF is generally insensitive to the Hughes Phenomenon. Nevertheless, as feature selection is an optional step in the classification process, and can be discarded if it has a negative effect on classification accuracy, it should be investigated as part of best practice for supervised machine land-cover classification using remotely sensed data

    Global Forest Monitoring from Earth Observation

    Get PDF
    Covering recent developments in satellite observation data undertaken for monitoring forest areas from global to national levels, this book highlights operational tools and systems for monitoring forest ecosystems. It also tackles the technical issues surrounding the ability to produce accurate and consistent estimates of forest area changes, which are needed to report greenhouse gas emissions and removals from land use changes. Written by leading global experts in the field, this book offers a launch point for future advances in satellite-based monitoring of global forest resources. It gives readers a deeper understanding of monitoring methods and shows how state-of-art technologies may soon provide key data for creating more balanced policies

    Basic research planning in mathematical pattern recognition and image analysis

    Get PDF
    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations
    • …
    corecore