1,139 research outputs found

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery

    Full text link
    Change detection is one of the central problems in earth observation and was extensively investigated over recent decades. In this paper, we propose a novel recurrent convolutional neural network (ReCNN) architecture, which is trained to learn a joint spectral-spatial-temporal feature representation in a unified framework for change detection in multispectral images. To this end, we bring together a convolutional neural network (CNN) and a recurrent neural network (RNN) into one end-to-end network. The former is able to generate rich spectral-spatial feature representations, while the latter effectively analyzes temporal dependency in bi-temporal images. In comparison with previous approaches to change detection, the proposed network architecture possesses three distinctive properties: 1) It is end-to-end trainable, in contrast to most existing methods whose components are separately trained or computed; 2) it naturally harnesses spatial information that has been proven to be beneficial to change detection task; 3) it is capable of adaptively learning the temporal dependency between multitemporal images, unlike most of algorithms that use fairly simple operation like image differencing or stacking. As far as we know, this is the first time that a recurrent convolutional network architecture has been proposed for multitemporal remote sensing image analysis. The proposed network is validated on real multispectral data sets. Both visual and quantitative analysis of experimental results demonstrates competitive performance in the proposed mode

    Demonstration of Large Area Land Cover Classification with a One Dimensional Convolutional Neural Network Applied to Single Pixel Temporal Metric Percentiles

    Get PDF
    Over large areas, land cover classification has conventionally been undertaken using satellite time series. Typically temporal metric percentiles derived from single pixel location time series have been used to take advantage of spectral differences among land cover classes over time and to minimize the impact of missing observations. Deep convolutional neural networks (CNNs) have demonstrated potential for land cover classification of single date images. However, over large areas and using time series their application is complicated because they are sensitive to missing observations and they may misclassify small and spatially fragmented surface features due to their spatial patch-based implementation. This study demonstrates, for the first time, a one-dimensional (1D) CNN single pixel time series land classification approach that uses temporal percentile metrics and that does not have these issues. This is demonstrated for all the Conterminous United States (CONUS) considering two different 1D CNN structures with 5 and 8 layers, respectively. CONUS 30 m land cover classifications were derived using all the available Landsat-5 and -7 imagery over a seven-month growing season in 2011 with 3.3 million 30 m land cover class labelled samples extracted from the contemporaneous CONUS National Land Cover Database (NLCD) 16 class land cover product. The 1D CNNs and, a conventional random forest model, were trained using 10%, 50% and 90% samples, and the classification accuracies were evaluated with an independent 10% proportion. Temporal metrics were classified using 5, 7 and 9 percentiles for each of five Landsat reflective wavelength bands and their eight band ratios. The CONUS and detailed 150 × 150 km classification results demonstrate that the approach is effective at scale and locally. The 1D CNN classification land cover class boundaries were preserved for small axis dimension features, such as roads and rivers, with no stripes or anomalous spatial patterns. The 8-layer 1D CNN provided the highest overall classification accuracies and both the 5-layer and 8-layer 1D CNN architectures provided higher accuracies than the random forest by 1.9% - 2.8% which as all the accuracies were \u3e 83% is a meaningful increase. The CONUS overall classification accuracies increased marginally with the number of percentiles (86.21%, 86.40%, and 86.43% for 5, 7 and 9 percentiles, respectively) using the 8-layer 1D-CNN. Class specific producer and user accuracies were quantified, with lower accuracies for the developed land, crop and pasture/hay classes, but no systematic pattern among classes with respect to the number of temporal percentiles used. Application of the trained model to a different year of CONUS Landsat ARD showed moderately decreased accuracy (80.79% for 7 percentiles) that we illustrate is likely due to different intra-annual surface variations between years. These encouraging results are discussed with recommended research for deep learning using temporal metric percentiles

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Investigating Temporal Convolutional Neural Networks for Satellite Image Time Series Classification

    Get PDF
    Satellite Image Time Series (SITS) of the Earth's surface provide detailed land cover maps, with their quality in the spatial and temporal dimensions consistently improving. These image time series are integral for developing systems that aim to produce accurate, up-to-date land cover maps of the Earth's surface. Applications are wide-ranging, with notable examples including ecosystem mapping, vegetation process monitoring and anthropogenic land-use change tracking. Recently proposed methods for SITS classification have demonstrated respectable merit, but these methods tend to lack native mechanisms that exploit the temporal dimension of the data; commonly resulting in extensive data pre-processing prohibitively long training times. To overcome these shortcomings, this paper seeks to study and enhance the newly proposed method for SITS classification from literature; namely Temporal CNNs. Comprehensive experiments are carried out on two benchmark SITS datasets with the results demonstrating that Temporal CNNs display a superior or competitive performance to the benchmark algorithms for both datasets. Investigations into the Temporal CNNs architecture also highlighted the non-trivial task of optimising the model for a new dataset.Comment: 20 pages, Submitted for publishin

    Supervised Machine Learning Approaches on Multispectral Remote Sensing Data for a Combined Detection of Fire and Burned Area

    Get PDF
    Bushfires pose a severe risk, among others, to humans, wildlife, and infrastructures. Rapid detection of fires is crucial for fire-extinguishing activities and rescue missions. Besides, mapping burned areas also supports evacuation and accessibility to emergency facilities. In this study, we propose a generic approach for detecting fires and burned areas based on machine learning (ML) approaches and remote sensing data. While most studies investigated either the detection of fires or mapping burned areas, we addressed and evaluated, in particular, the combined detection on three selected case study regions. Multispectral Sentinel-2 images represent the input data for the supervised ML models. First, we generated the reference data for the three target classes, burned, unburned, and fire, since no reference data were available. Second, the three regional fire datasets were preprocessed and divided into training, validation, and test subsets according to a defined schema. Furthermore, an undersampling approach ensured the balancing of the datasets. Third, seven selected supervised classification approaches were used and evaluated, including tree-based models, a self-organizing map, an artificial neural network, and a one-dimensional convolutional neural network (1D-CNN). All selected ML approaches achieved satisfying classification results. Moreover, they performed a highly accurate fire detection, while separating burned and unburned areas was slightly more challenging. The 1D-CNN and extremely randomized tree were the best-performing models with an overall accuracy score of 98 % on the test subsets. Even on an unknown test dataset, the 1D-CNN achieved high classification accuracies. This generalization is even more valuable for any use-case scenario, including the organization of fire-fighting activities or civil protection. The proposed combined detection could be extended and enhanced with crowdsourced data in further studies
    • …
    corecore